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II
CHAPTER I

|
INTRODUCTION AND SU1T.14RY

This dissertation is concerned with the control of a one-

dimensional diffusion process. The concept of a controlled diffusion

process used here is almost identical to that defined by Mandl [16]

The system we both consider is a stationary diffusion process defined

on a compact interval of the real line The drift and diffusion coeffi-

cients depend upo:i a stationary control which is state dependent The

costs generated by the process are functions of both the control and

J the sample path of the process- Mandil's concept of a controlled diffu-

sion process is generalized by allowing controls to be ve,tor-valued

J with the set of admissible control actions defined by a piecewise

continuous set-valued function on the state space

If the process is controlled by a single person and th.; process

1 generates a single stream of costs, then we have the ordinary optimal

control problem of Chapter II. These problems involve finding controls

which minimize expected costs In the ,ase of undiscounted costs.

Mandl's results ar,- generalized to arcount for our previ.ously mentioned

restriction on admissible control fun:tiuns pith discounting, the

minimal expected discounted cost as a function of the initial state of

the process is shown to be the unique solutl,.n or a differentiai equation

I A necessary and sufficient conditinn is given for a contiol, to yield the

minimal expected discounted cost, and a method is presented for computingI



this optimal control

In Chapter III, we suppose the process is controlled by two

persons, one player who chooses one component of the control wants to

minimize the expected cost, while the second player who chooses the

other control component wants to maximize the expected cost The

problem of controlling this process is a sequential, zero sum, two-person

game. Moreover, by an optimal control is meant a saddlepoint of the

expected cost function. The expected cost associated with a saddlepoint

is called the value of the game, The value, if it exists, is shown to

be the unique solution of a differential equation Furthermore, a

necessary and sufficient condition is given for a control to be optimal.

If the diffusion process is controlled by N persons and it gen-

crates N streams of costs, then the problem of controlling the process

bcomes a sequential, non-zero sum, N-person game. Suppose the ith

player, who operates the ith  control component, wants to minimize the

expected costs of the ith  cost stream. Then by an optimal control

will be meant one that is a Nash equilibrium point of the expected costs

corresponding to all admissible controls. In Chapter III each Nash

equilibrium point is shown to be the unique solution of a differential

equation, and a necessary and sufficient condition is given for a cud-

trol to be optimal

A piecewise continuous optimal control may net exist for a

problem of any type m,2ti )n a .d a~cvc in Chaptcr II, a piecewise con-

tinuous optimal control is shown to #-xist for the single person control ..

problem under a variety of alternative conditions. One is that the

action set in each state is finite and state independent, and the drift, I

-2-



!
5 diffusion, and continuous movement costs are analytic in the state A

second is that the action set in each state be convex the diffusion

coefficient be action independent, the drift coetficient be affine in

the action, and the continuous movement cost be stLlyClV conV'x in the

I action. Conditions of the latter type are also given for multiperson

control problems.

Chapters II and III provide several appli,*:aticns of the models

developed herein The ordinary optimal control model is applied to the

problems of controlling a reservoir, controlling pollution, optimizing

a queueing system, and making optimal investments The zero sum, two-

person game model i applied to the pvoblem ol determining how many

people should be receiving welfare The non-zero sum N-person game model

is applied to ttie problems of pollution aid warfare Chaptcrs II and

1i1 also include :iumerous example calculations cf the optimal contiol for

each type of model; some of thuse examples pertain to the applications

that are discussed

i'
I



CHAPTER II

SINGLE PERSON CONTROLLED DIFFUSIONS

This chapter describes a class of single person controlled one-

dimensional diffusion processes where the control is a vector-valued

function on the state space, These processes generate costs, and the

optimal control problem is to choose an admissible control that mini-

mizes expected costs The following three sections provide results for

discounted costs, undiscounted costs with a non-conservative process, and

undiscounted costs with a conservative process Generalizing M1andl

[16], the major results in these sections are necessary and sufficient

conditions for a control to bc optimal as well as characterizations ot

the expected costs corresponding to an optimal control The method for

solving a problem is basically the same in each case A differential

equation is solved and the solution is used to dctermine the optimal

Lontrol

Section 4 establishes sufficient conditions for the existence of

piecewise continuous optimal controls Thc remaining four sections

discuss fou: potential applications of single person controlled difiu-

sion processes Each such section describes how Lhese processes can

be used as models of the physical systems being considered, and then

examples are provided to dumonstrate how actual problems could be

solved

-4-



I
1 1 The Controlled Diffusion Process,

I
Consider a diffusion process with stato .spatc , a compact

interval [ro,roI  of the real line E, which is Lontrolled by a single

person. For some positive integer n and some copict set K C Enl the

control is a vector-valued function on S with range K Let A be
s

a poit-to-set map from S into K such thdt AS is piecewise contin-

uous in the Hausdorff r,etric and for each s L S the set A is a non-s

empty compact subset of K Each timr. the process is observed in state

s, an action "a" is chosen from the set A The set M1 of admissi-S

hle controls consists of all piecewise continuous f unLt ions i( ) n S

with range in En  such that the action a(s) t A toi each s L S A

function a( ) is an adissible control ii and oniy if a( ) M_ •

Throughout this chapter it should be cicar trom thL ontcxt whether the

letter a denotes an admissible control a - a( ) M or an admissible

action a c A tor some s L S In tie sequel we shall assume A iss S

such that M is non-Void Although this is always true thenever K C E,

it is not known whetiter in general M 1 * if K _ 2

, In order to chai acterize the Map A , lot the s eL Z'. consist otS

all compact subsets ot K !,.'e deinc. a iotr!c ,- C .n as follows FoI

any a E En  and Y t- Z let D(a ,Y) he tht Euclidean ditance bet,,een the

poir t a and the set Y For any Y '  
V

(Y1,Y) sup D(a ,Y ) + Stp (a , 1 )

- a , i  P ', r

I Thcn (2 ,,z) is a metric space vitli the 1~aui-d,,r I et ric, and the nap

4- 5 --



I

from S into (Z, ) is continuous at s for all but a finite

number of s c S

It can be shown (for example, Hogan [12]) that As  is continuous 3
in the Hausdorff metric at the point s if and only if A8  is both

upper semi-continuous, that is, a closed map, and lower semi-continuous

at s The map A is upper semi-continuous at s tt (i) s * ,
( ) I i 4"

a a , and (iii) a c A i together imply a e A - The

map A is lower semi-continuous s if W s s and

(ii) a A . together imply there exists a sequence ot actLions

IS IL
a : A such that a - a

S

The definition of a controlled diffucioa pro-ess is a slight,.

generalization of Mandis [16, p, 157] LeL d(s.a) be a continuous

positive real-valued function on S - K Then for a( ) M M the I
piec-ewise continuous funcltion d(sa(s)) is itc diffusion coefiicient

of the process Similarly, let b(s,a) be a continuous real-valued I
function on S - K so that b(s,a(s)) 's the drift coefficient of

the diffusion process

Following Mandl, with a given control a( ) >1 the diffusion j
process is completely specified by the generalized classical differen-

tial operotor -

3

1) -- d(sa(s)) d + h(s.as))-d

ds

togecher vith Fellor's [7,9] houndary condition



11

K v(r) + bk 1 (rj) fv(s)d, (S)J - (-1v) (

, i
+ . (Dv)(r ) - 0 , J- 0,1,

!I

where v(s) is some function whose second derivative is piecewise

continuous on S At each boundary rr1 the fout non-negative

parameters J, , j and ,:J, at least one Of which must be positive,

correspond respectively to the phenomtna of absorption, adhesion, reflec-

tion and instantaneous reLurn Corresponding to 0 is the probabilityr
distribution function (s) whe d.(S) I~(r 0

9r i)

Feller [8] and Ito and McKean [14] ,)resent partial probabilist.,_

interpreta, ions of these boundaLV co:-Id.tios in the case of diffusion

processe , and Ito and McKean [13] present a cor.-pletc description in the

case of Brownian motion. Their results are brierly described here,

The reflecting barriet prccess with . - 3 - 0 to3 J J

j - 0,1 can be desciibed by constructing a d1ffusion process on L

W. th L -r r0 detine the point-to-set map I S E a s

J
f(s) - x Ii I x = s ' 2nL or X I - + ml.

J tr s.mt.± 1 1 C l

Ncte that U I (s) 1 1 a 'i , 1:,:r - :.) h s)

I
t + i t I



equal to the dri ft and diffusion coefficients, respectively; of the

reflecting ba,.rier process et the point f -(x) If the constructed

process is represented by the sample path - x(t) then the sample
+ -Ith

path s (t) - f (x(t)) represents the reflecting barrier process,

A diffusion process s(t) without reflecting barriers

0 = 0) behaves like the reflecting b.rrl%.r process s+(t) up to

the first passage Oime rr. - min{t s+(t) _ r0  or s+ (t) - r Then,

if s+(m) = rj, s(t) = r for an exponentiai holding time e with

conditional law

P(e " s1 )  = e S

At time m + e either the process terminates (absorption) with proba-

biiity .j/(Oj <j) or it starts afresh by Jumping to the point

p c (ro r I ) with conditional law

P(s(m + e ) = , e , s + ) = (d)/(" +

The interpretation of the boundarv coid.tion cf retlection com-

bined with absorption and/or adhesion ( - ) 07 " 0) is

rathLr more complicated. Briefly, with c 0 .he process behaves

like the reflecting barri.er process with a stochastic time scale change

that counts standard tci-,e while s+ (t) r I:ot l ns slow on the

oatrier with the r9.sL th-at, compared to the rof ic: ing barrier ?,rcess

this process lingers at the boundary longer than it should, Wth

0 the process behaves -s if -;r.. i., I. ilt'd



boundary rj at a random time that iz a functEion of the visiting set

it I s(t) r If" (< + ) 0 and the passage time

m(,) i infit > T s(t) # rj then the conditional picbability

P(m(-) - 0 s(i) r) 1

The process with both reflection and insLantaneous :etuzn occurring at

a boundary ( 0 8 0) can be constructed from a prozess with both

reflection and absorption .eccurrirj at the boundary (%..J ' 0) as was

done by Mandl (16. pp 64-661

The diffusion process generates costs acczding to its sample

path and control (Imandl [16. p.. 148]) These casts are of three types

The continucus movement cost is the cost rate per unit time. Let

c(s,a) be a continuous function from S A K into E it s(t) is

the sample path of the process and a(s) the co.ntrol then the integral

of c(s(t),a(s(t))) over a time intrerval equals the total continuous

movement cost generated zver this time interval

The second kind ct cost is associated wir.h jurps ,intantaneous

returns) by the p'oess from rhe boundaLies F. ir = 0 1 let (s)

be a function from S into E which is integrable with respect to

(s) If the ptcess jumps from boundary r. Lo the pointJ

s (r,r) at tim%2 t then there ariises at [1his5- tLma the -lump cost

(s) Denote by -( S) t - 0. s . S, j 0,1 the integer-valued

r'andom variable representing the number ot .lumps made by the process

op through time t itom boundary r into the in-ecvai [r0Os)

Then the total cost due to Jumps from r. up tnrough time t equals



the integral over [ror,] of v (s) (t,ds) I
The third kind of cost depends upon the termination of the

process, If the process is absorbed at boundary r,, then at this

termination time there arises the cost O, a 0,1 .

Following Mandl (16, p. 149], if C(t) is the total of the costs

generated by the process up through time t, then the Laplace-Stieljes

transform

f e-tdC(t)

can be regarded as the total, discounted, infinite horizon cost gener-

ated by the process, where the discount factor is e and . 0

Given a controlled diffusion process, admissible ontrol, and discount

factor, let v(s) denote the conditional expectation of the discounted

cost of this process given its initial state s. that is

v(s) E] e" 'tdC(t)

0

Nandl (16, p. 1491 proves the following result. 1

Theorem I The expected discounted cost v(s) corresponding to

a(-) c M is the unique function on S such that v'(s) is continuous,

(1) d(s,a(s))v"(s) + bs,a(s))v (s) - .,(s) + c(s,a(s)) 0

holds for every s t (r0,r) which is a continuity point of a(s), and

iI

1 -- 0



(2) (6 + tK)v(r efv() + V s)4()-(l ,vI(

S!

+ a (Av(r ) - c(r ,a(r ))) - K = 0, j 0,1

If the process is non-conservative and neither boundary is purely

adjesive, that is,

KO + KI > 0 , K + + e - 0 j 0,I,
0 1J jj

then Mandl (16, p. 1521 shows that the expected total undiscounted

:oat v(s) - E C(-) is finite and is the unique solution of (1) and
a

(2) for X - 0

If the process is conservative (<0 + K = 0), then the total

undiscounted cost aay oe infinite. The number 0 in the following

theorem by Mandl (16, pp. 152-157, 168] can be interpreted as the mean

cost per unit time.

Theorem 2. Let K 0 . :l W 0 and assume at least one boundary is not

- purely adhesive, that is, r 0 + eO + i + el > 0 If v(s,X) is the

expected discounted cost corresponding to 0 and some a(,) c M,

then

I lim xv(s'X) C' and lim ,- Vd(s ,) =W(S),

-II-
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where 0 is some number independent of the state s, and w(s) is

some absolutely continuous function on S . Moreover,

WV

P(lim t C(t) -0) - 1 j
and (O,w) is the unique pair satisfying

(3) d(s,a(s))w'(8) + b(s,a(s))w(s) - + + c(s,a(s)) - 0

for every s e (ro,r I) which is a continuity point of a(s), and

(4) ejf fw(y)dy + Vj(s) doj(s) + (.-I)1  ) w-(

S rj

+ Cj(c(rjia(rj)) - C) - 0 j - 0,1

2. The Discounted Cost Case.

Let v(s,a) = v(s) denote the expected discounted cost of a

process corresponding to the admissible control a ; M - Then v(s,a)

will be the unique solution of (1), (2). The minimal expected dis-

counted cost v(s) is defined to be

-12-



1 (s) - inf v(s,a)
aEM

I
An admissible control a c M is said to be an optimal control if

v(s,&) - O(S) for all s r S . The results here for the discounted

cost case generalize Mandl's [16, pp, 158-173] results for undiscounted

costs, The main results of this section are Theorem 3, which character-

izes the minimal expected cost, and Theorem 6, which provides necessary

and sufficient conditions for an admissible control to be optimal

Theorem 3. The minimal expected discounted cost v(s) is the unique

solution of the equation

(5) v"(s) + min {d(s,a)- [b(s,a)v'(s) - Xv(s) + c(s,a)]) = 0
aEA

s

satisfying

-" Cb) (0 + K )V(r.) - j f(V(s) + vj(s))doj(s) (-l)J~ V'(r )

- < N 0 J 0l.I .1 i

where= min c(r.,,a) , J 0,O
ej acA1

-13-



Two preliminary lemmas will be provided before the proof of

Theorem 3 is presented, The first lemma, stated without proof, is a

slight modification of a selection theorem due to Dubins and Savage

[5, Chap. 2.16] (see also Maitra (15]). I am grateful to Robert Rosen-

thal for suggesting the appropriateness of Lusin's Theorem in the proof

of Lemma 5,

Lemma 4. If h(s,a) is a continuous real-valued function on S x K,

then there exists a Borel measurable function f(s) on S into K

such that h(s,f(s)) - min h(s,a) and f(s) E A for each s c S,
acA S

S

Lemma 5 Suppose f( ) is a function on S into K which is measur-

able with respect to Borel measure P and satisfies f(s) c A for

each s c S . Then for every c > 0 there exists a measurable subset

C S and an admissible control a(-) E M such that L(S - ) and

a(s) - f(s) for all s S

Proof- Lusin's Theorem (e.g. Royden (181) is valid for vector-valued

measurable functions, so for every 0 there exists a measurable

subset S' C S and a continuous function g(s) on S such that

i(S - S') < ' and f(s) - g(s) for all s S' , It remains to show

that g(s) coincides with some admissible cuncrol on a large enough

subset of S'

Let S" = {s , Sjg(s) c A. so clearly S' C S" and

(S - S") < L Since g(s) and A both have closed grap>s, S"

is closed, Thus there xists a sequence (S. of disjoint closed
1

-14-



mopeow 5M1 i 1;:~h: 0~o so0 e intege IN, iVw(v - Not

ine l S" Without loss of generality, assume

PS > 4S2 > ..., so that for some integer N, P(S - LLIi Note

that there exists an admissible control a(-) c M such that a(s) - g(s)

N N
for all a c S If we set S S' (UIS), then

N N'L W(s - S) < (S - s') + W(S - J - i U(S - s') + ,(S - S") + I(s" - i USi)

E, so the pair (a(s),S) is as desired

Proof of Theorem 3, Equation (5) has a unique solution v(s) satisfying

boundary conditions (6) by Theorem 3 of Chapter III The remainder of

this proof will be in two parts; first it will be shown that v(s) _ v(s,a)

for all a E M

For arbitrary a £ M denote v(s) v(s,a) - v(s,a) and define

*(s) by

(7) (s) - v"(s) + d(s,a(s))- (b(s,a(s))v'(s) - ,,v(s)]

- v"(s,a) + d(s,a(s))- 1 b(s,a(s))v'(s,a) - -,v(sa) + c(s,a(s))]

( -"(s) + d(s,a(s))-l[b(s,a(s))v'(s) + c(s,a(s))]}

< v"(s,a) + d(s,a(s)) [b(s,a(s))v'(sa) - s) (s,a (s))]

- {v"(s) + min d(s,a)- lb(s,a)v'(s) - \v(s) + c(sa)]fl - 0
acA

SJ
The last equality follows from equations (1) and (5), note hy the first

Jequality that ',(s) is piecewise continuous, Subtracting (6) from (2):

it can be seen that v(s) also satisfiesI
" . . .. . .. . . .. .... .. . ..-15- T
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(8) (0 + PC)M(rj) - aj j7(s)dj.(s) - (-l) irj'(r)
s

+ o(XV(r) - (c(rja(rj) - Y 0 J O= 0,

Z j

Conclude from (7) and (8) that 9(s) is the expected discounted cost

corresponding to the controlled diffusion process with admissible control

a(s), continuous movement cost (s,a(s)) - -d(s,a(a))p(s) > 0,

instantaneous return cost equal to zero, absorption cost equal to zero,

and ;(rj a(rj)) c (rj1a(r)) - 0 , j - 0,1 Since all costs are

non-negative it is apparent that 9(s) - v(s,i) - Q(s) > 0 for all

The final part of this proof is to show V(s) - inf v(s,a) by
arM ""

demonstrating the existence of a sequence (a () of admissible controls

with the property that v(s,a n ) -n 0(s) as n -, for all s L S - By
n I

Lemma 4 there exists a Borel measurable function f(-) from S into

K such that f(S) E As and

d(s,f(s))- (b(s,f(s))v'(s) - ".v(s) + c(s,f(s))] -'

- min d(s,a) -[b(s,a) (s) - i(s) + c(s,a)]
ac-A

for each s E S By Lemma 5 there exists a sequence of admissible

controls that col'.;erges in measure to f(s) Now some subsequence must

converge almosc everywhere to f(s), so there exists a sequence (a (.)

of admissible controls that converges a, e- to f() Also, we can

-16-



assume an(r J ) Ar is such that aJ(c(rj an(rj y ) 0 for

n - 1,2,-, and j - 0,1 .

Denote n (s) v(s,an ) - 0(s) and define n (s) as in (7) by

n(a) - ij"(s) + d(sa a(9))- 1[b(s'an(S))Vr ( ) QV()
n n nn s - vs)

=(-{"(s) + d(s,an(S))-I b(s,an (s) )a (s) -)v(s) + c(s'an(S)]

Note that the piecewise continuous function -y n(s) converges almost

everywhere to

V"(s) + d(s,f(s))-I[b(s,f(s))v'(s) - XV(s) + c(s,f(s))]

- "(s) + min {d(s,a) 1[b(s,a)v'(s) - Av(s) + c(s:a)]} 0
acA

s

As in (8) we see that v (s) must satisty
n

(e + )v n(r) - (S)d ) - (-i)i 7!jg''(r )
j Jn j J v JJ J

S

+ c iv(r)= 0 j 0,

Thus Vn(s) is the expected discounted cost of a controlled diffusiou

nn
process with control a n c, zero jump, stopping and adhesion costs,

and continuous movement cost -d(s,a n(s)) n ) Since the only cost

Note that the continuous movement cost here is no longer the
composition of a continuous function on S K with a piecewise contin-
uous control. However, in view of Mandl [16, pp 148-49), this presents
no problem since -d(s,a n(s)); n(s) is piecewise continuous on S!

-1I'



of the process converges a. a. to zero, we must have o (s) - v(San) -
nn

IP

- 0 as n and Theorem 3 is proved.

Theorem 6. Let 9(s) be the minimal expected dibcounted cost. for a

controlled diffusion process. A control a c M is optimal if and only

if

(9) d(s,a(s))1 (b(s,a(s))O'(s) - Wg(s) + c(s,a(s))]

-1min d(s,a) [b(sa)O'(s) - XQ(s) + c(s,a)])

for every s c S which is a continuity point of a(') and

wb

(10) a (c(r ,a(r )) - Y]) - 0 for J 0,1

Proof. Suppose (9) and (10) hold. By (5) we have

ft"(s) + d(s,a(s))- lb(s,a(s))Q'(s) - 'OQ() + c(s,a(s))] - 0

and by (6) we have

(a i + <)irj I 0j f(V (a) + vs)dj (s) - -)Jj'(r )

S

j ('(r ) - - - 0 , j

Hence v(s) satisfies (1) and (2) so Q(s) - V(s,a) and a(s) is an

optimal control.

-IS



Conyersely, suppose a e M is an optimal control but that (9)

does not hold, that is, for some s c S which is a continuity point of

a(s) we have

d(s,a(s))- (b(s,a(s))*'(s) - X(s) + c(sa(;))]

min {d(a,a)-l (b(s,a),)'(S) - vg(s) + c(s.a)j!

acA-

Defining (s) as in (7) we note that (s) < 0 in some neighborhood

of a . Using the arguments following (7) and (8), we ;onclude

v(s,a) > O(s), which is a contradiction.

• Finally, suppose a c M is an optimal control and (9) holds,

but (10) does not. Using the arguments following (7) and (8) again we

have 'that v(s,a) - O(s) s the expected diacounted cost of a process

with zero continuous movement, instantaneous return and absorption

costs but wi th positive adhesion costs. Thus v(r *a) V(r) Lor

j - 0 and/or j - 1, a contradiction, and Theorem 6 is pcved

The minimal expected discounted cost and an optimal control may

in principle be calculated for a process as follows- Define the tunction1 f(s,y,z) from S E into K such that f(s,y,z) L As.

C i c((rjif(rj,y,z)) - Y.) = 0 , for j 0.1 and

d(s,f(s,y,z))- ib(s,f(s,yz))z - )y + c(s,t(s.y;z))]

- I -19-



Sain {d(s,a)f1 [b(s,a)z - ky + c(s,a)])
acA

for all appropriate s c S and y, z s E . Then the minimal expected

discounted cost Q(s) will be the unique solution on S to ]
I

d(s,f(s,' (s),Q' (s))O"(s) + b(s,f(e,Q (a),, (s)))Q' (a)

- XO(s) + c(sf(s0(),Q'(a))) = 0

satisfying (6) The function f(s~v(s),v'(s)) on S will then be

an optimal control provided it is admissible, that is, piecewise contin-

uous.

The following example demonstrates that the optimal control is a

function of the discount factor X

Exampleo

0 r0 < rI ,

A - {a E Elks> lal , k> 0

d(s,a) * d > 0

b(sa) - ba/s , b > 0

c(s.,a) c > 0

r0 boundary condition: v'(ro) - 0 (reflcction),

r1 boundary condition: v(r1 ) A 1  (absorption with cost

-20-



Upon substitution into (5) one observes that the optimal action assumes

either the maximum or minimum value as the derivative of the minimal

expected discounted cost is respectively negative or positive. If

v(rO) 0 c/A, then the unique solution of (5) is 0(s) - c/A If

Q(r0) >c/A and a(s) = -ks, then Q'(s) > 0 so a(s) - -ks is

optimal and v(r 1) > V(rO0) > c/X Similarly, v(r O0) < c/A implies

a(s) - ks is optimal and v(r1 ) < v(r0 ) . Since v(r1 ) = X1 deter-

mines v(r0 ) uniquely, we conclude that the optimal control is given

by

f-ks , if A1 i clX

a(s) 
1X

ks, if A1 < c/A0

3. The Undiscounted Cost Case.

Mandl (16, pp. 158-173] provides results for the undiscounted

cost case (A = 0) when the controls are real-valued functions and the

aets of admissible actions are independent of the state space, that is,

for some compact K C E, A = K for all s c S , The purpose of thissN
section is to generalize his results in accordance with the formulation

of section 1.

For the undiscounted cost case there are two situations; either

the process is conservative or non-conservative0  For the purposes of

this section, the boundary conditions are said to be non-conservative

if at least one boundary is absorbing and neither boundary in purely

-21-
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adhesive, that is

-%,

K >0, * j + C. 0 , J 0,i.

Let v(s,a) denote the expected cost of such a process corresponding

to the control a E M H Then v(s,a) will be the unique solution of

(I) and (2) with X G U The minimal expected cost 0(s) is defined

to be i

Q(s) -inf v(s,a)
aEM

An admissible control a . M is said to be optimal if V(s) v(s,a)

for all s c S . The .'ain result for non-conservative processes and A

undiscounted costs is the following.

Theorem 7. Suppose the boundary conditions are non-conservative- Then

the minimal expec.ed cost V(s) is the unique solution of

(11) 0"(s) + min ,a) -b(s,a)v' (s) + c(s,a)]; = 0
aLA

satisfying

r
(12) ( + + 2)(r - + (s)d () - (-) ' .

- Oj'j - = , 0,1i,

I I I I I I I I I I I I I I I I I-22-



mmai c(r. ,a) *j 0,1where m c 3A
41 aEA rj

A control a F M is optimal if and only if

(13) d(sfa(s))- (b(s,a(s))V '(s) + c(s:a(s))]

= ri{d(s,a)-1 [b(s,a)v'(s) + c(s,a)]) I
arA

s

for every s c S which is a continuity point of a( ) and

(14) c (c(rj,a(rj)) - j) 0, j= 0.1

Proof There exists a unique solution v(s) to (11), (12) by virtue of

Theorem 14, Chapter ILI. The remairider ot the proof proceeds as with

Thecrems 3 and 6, so it will be omitted

Fot the purposes of this section, the boundary conditions are

said to be LonservaLive if neither boundary is absorbing and at least

one boundary is n-t purely adhesike, that is,

<0 0 + V + :; + '
0 ) 0 1 -1

LeL."(a) denote Lhe mean :ost per unit time o. such a process corre;-

pcnding to the admissible co'ntrol a I Then -(a) is the unique

number to which there exiSts a solution tD (3): (4) The minimal mean

1 ()st is defined to be

-23-



O - inf o(a)
acM

An admissible control a E M is said to be an optimal control if

O(a) a 6 . The main result for conservative processes and undiscounted

costs is the following.

Theorem 8. Suppose the boundary conditions are conservative. The

minimal mean cost is the unique number 0 such that the equation

(15) w'(s) + min {d(s,a)- [b(s,a)w(s) - C + c(s,a)]} * 0

has a solution w(-) satisfying

sj

(16) 0 f w(y)dy + () (s) + (-) w(r)
-J .

S r

+ c(y - C) =0 , 011,

where y - min c(rj,a), J - 0,1
acA

r..3
A control a F M is optimal if and only if

-1(17) d(s,a(s)) [b(s,a(s))w(s) -' + c(s,a(s))]

min d(s,a) [b(s,a)w(s) - C + c(s,a)]
acA s

for every s c S which is a continuity point of a(-) and

|i -24-



(18) 0c(c ,a(r.)) -(r ) 0j , Oi

Poof. Equation (15) has a solution satisfying (16) for a unique number

- by Theorem 16 of Chapter III, If C(a) - then a contradiction

can be obtained as was done with Theorem 3 of Chapter III to show the

unicity of v(r0 ) Using the reasoning of Theorem 3, there exists a

sequence {an (s)} of admissible controls such that G(a n ) - as

n so 0 - inf C(a)
aM

To prove the necessary and sufficient condition for a contrcl to

be optimal, if (17) and (18) are true. the w(s) and C satisfy (3),

(4) so , - O(a) and a(s) is optimal, Conversely. if a(s) is

optima. but (17) is violated at a continuity point of a(s), then

employing the reasoning of Theorem 3 of Chapter III used to show the

unicity of v(r0 ), we construct a process with negative :.ontinucus

movement costs, non-positive adhesion costs, and zero instantaneous

return costs but with a zero mean cost per unit tim.e, a ccntradicticn

Finally, ii -(a) and (17) holds but (1S) is violatea, then a

similai contradiction is obtained. and Theorem 8 is proved

4. Existence ot Admissible Optime1 cn.,-is

There is no guarantee that an admissbi cpti-.al control %wiii

exist ior a contrc, led ditfusion process A pie-etise continuotus cptliral

onrOlo need not exist, as the following example shows; S A [-i I]

-25-
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d(s,a) and b(s,a) constants, and c(s,a) - sa sin(!) Conditions
a *P

which guarantee the existence of admissible ontimal controls are pro-

vided in this section,

It is apparent that the problem of contr-Aling a diffusion process

has several similarities to the problem of cntrolling a classical deter- i

ministic system. If the expected discowhted cost v(s) of a diffusion

process is interpreted as the state as a function of time of a deter-

ministic system, then differentJil equation (1) describes the behavior

of this system over the time interval r,,r I] subject to the (non-

classical) boundary condition (2). Furthermore, the problem of optimally

controlling this deterlinistic system so as to minimize the functional

f'v(s)ds
/" r0

is equivalent to the problem of optimally controlling the diffusion

process. Thus the question of whether piecewise continuous optimal

controls exist for deterministic systems is germane to the subject of

thJs section-

The mathematical system theory literature pertaining to the

existence of optimal controls can o,-;erally be classified into one of two

categories Most research (e g , Cesari (4]) has been concerned with

proving the existence of a measurable optimal control. These papers

do not concern us because measurable controls need not be admis - '-e

from our standpoint On the other hand, a few papers (e.g., Halkin [ll]

prove the existence of piecewise continuous optimal controls, but always

-26-



for the special case where the state equation is linear in the state

and control together. The following results will serve to weaken this

linearity restriction, although it should be borne in mind that the

classical results are for N-dimensional systems. The existence theorems

in this section will all be for the discounted cost case; analogous

results hold for the undiscounted cost case.

We say the function f(s) : S - E is analytic at s if it has

an absolutely convergent power series expansion f(s) a as in

-, j -O
some neighborhood of s , The function f(s) is analytic on the

interval SI C S if there exists an open interval S2 D S1 and a

function g(s) which is analytic at each s c S2  such that f(s) g(s)

for each s e S The function f(s) is piecewise analytic on S if

" S can be decomposed into a finite number of intervals on each of which

f(s) is analytic. The following theorem is the main result of this

section,

Theorem 9 If A = 112,' ,N} and if d( ,a), b(',a) and c( ,a)s

are piecewise analytic on S for each fixed a - 1,2.-,N, then there

exists a piecewise constant optimal control,

Proof. The function d(s,a) is positive for all s c S and all.

a = 1; -N so a(s,a) - d(s,a) - 1 , 6(s,a) - b(sa)d(s,a) and

y(s,a) - c(s,a)d(s,a) -1 are piecewise analytic in a on S for each

fixed a = , ,N . Let v(s) be the minimal expected discounted cost

for this process. Let a(s) be a function on S which satisfies

a(s) L tl< -,N) and

-27-
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v"(a) - -(s,a(s))v'(s) + Xa(s,a(s))v(s) - Y(s,a(s))

f

for each 9 E S . Thus a(s) will be an admissible optimal control if

it can be chosen piecewise constant. To prove this choice is possible,

it suffices to show for each s e S the existence of some 6 > 0 such

that a(s) can be chosen constant on (a - 6,S) r) S and on (§,I + 6) I
rlS . We discuss only the second case, leaving the other to the reader,

For i - 1,-.,N and arbitrary e [ro,r1 ), let vi(s) be the

unique solution on S to i

V"(s) + i CL(S'v (S) + y(si) I

and

V() - vG) , vI(-S) ,- ()

From differential equation theory, vi(s) is piecewise and. tic Lid

therefore analytic on (ss + .) for some 6 > 0 Hence fur some

6 0 there exists some integer j in {il, ,Nj such that 1
Vj(S) , vi(s) for all i - 1,'' ,N and all s c (s,s + 6) We shall

now show that the action a(s) - j is optimal for all small enough

For this j and each i - l,'.,N define

I?
(s) = [6(s,i) - a(s,j)]v (s) - X(A(si) - a(s,j)] v(s) + [y(s,i) -(s,j)].

-28-
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!
and note that i(a) is analytic on (s,s + 6) for small enough

6 > 0 that i( ) = v (s) - vi(s), then (s) will be the

unique solution on S to

ii s(s) - -s(s~i) i(s) + xa(s,i)Y1 (s) + ys

satisfying Q , ( )i 0 , For some 6 , Oi i(s) is either

uniformly positive, uniformly negative, or vanishes identically on

(s,s + 6) By differential equation theory and the choice of j. we

conclude for some 6 > 0 and each i - 1, oN that (a) 0 for

all a E (s,s + d)

It follows that for all small enough s > s we have

v"(S) - in [a(s.i)v*(s) - .v(s,i)v (s) + y(si)]
SiEW,, °  ,N:

v s) v(s) , and v'(s) v' (6)

jBecause of the uniqueness of solutions to thii equation. this implies

v(s) v j(s) for all small enough s > s Hence we can chocse a(s) =

as the optimal acLion for each small enough s -- s

Corollary I0 Let A s "f(s).. J.fN(s)' an( suppose tor i .N

J that i (s) is a bounded, piecewise continuous, vector-valued function

cn S and the functions d(sf (s)): b(srf (s)): and c(s,f i(s)) are
3. 2.

plecewise analytic on S Then a piecewise cc;ntinuous, admissible

optimal control exists-

!
-29-
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Proof. If we set c(s,i) c(s,f (s)), etc, so that As {l.° ,N}
i~s) tc,. o9- ,

then Che proof is immediate.

An admissible optimal control will therefore exist if, among

other things, the map A is finite valued and piecewise continuous.

Note that the number of available actions may vary from state to state.

The hypotheses of Corollary 10 are satisfied by a variety of functions.

For example, if d(s,a) is an analytic function of the two variables

s and a, and fi(s) is analytic in s, then d(s,fi(s)) is

analytic because the composition of analytic functions is analytic. On

the other hand, suppose d(s,a) is an analytic function of s for each

fixed a, but it is not analytic in the two variables s and a

together. If f i(s) is a piecewise constant function, then d(s,fi(8))

is piecewise analytic.

The following theorem exploits the fact that if the optimal action

is unique for all but a finite number of s c S, then a piecewise con-

Einuous optimal control must exist

T'aorem 11 Let v(s) be the minimal expected discounted cost, suppose

A is a convex set for all but a finite number of s c S and suppose

d(s.a) 1[b(sa)v'(s) - Av(s) + c(a,a)] is a strictly convex function

of a for all but a finite number of s t S Then an admissible

optimal control exists

PrCof Let the unique (apart from a finite number of points) control

a( ) S - K be such that a(s) c A and
s

-30-



d(s,a(s)) (b(s,a(s))v'(s) - Xv(s) + -(s,a(s))]

Smin {d(s,a)- [b(s,a)v'(s) - .( ) - c(s~a)]!

S

for all s c S . In view of the uniqueness, a(v) is piecewise con-

tinuous, completing the proof

_*1
The proof of Corollary 12 is an immediate consequence of Theorem

11 and is therefore omitted,

Cotollary 12- If A is a convex set for all but a tinite number of
6

s E S. c(s,a)d(s,a) is strictly convex in a for all but a finite

number of s S, and d(s-a) and b(s~a)d(s a) are af.in E with

respect to a, then an admissible optimal control exists.

The following theorem combines elements of the previous tw

Theorem 13. Let As  [a1 (s),a 2 (s)], a compact interval in E fot

each s L S, where aI(s) , a2 (s) are bounded, piecewise continuous

functions Suppcse d(s,a (s)), b(s,ai(s)), and :(s,ai(s)) are

plecewise analytic on S for i = 1,2 Let S be cicm.mpust.d into a

iinitte number of intervals If S is any such interval then suppose
-L -i

that one of the three tL11t1icmS d(s,a) bks,a)d(s.a) , or

c(s a)d(s;a)"  is either strictly convex or sti ictiy concave in a.

and the other two functions are aifine ii a; tor acl s L S Then

1 an admissible optimal control exists
- .

'I_



Proof Define a(sa) - d(s,a) - , 8(s,a) - b(s~a)d(s,a) , and

y(s,a) - c(s,a)d(s,a) We can assume without loss of generqlity that

aI(S) and a2(a) are continuous on S; that a(s,ai(s)) ,  (aai(s)),

and y(sa 1 (9)) are analytic on S for i - 1,2; and that the decom-

position is the trivial one, S - S There will then be three cases,

corresponding to whit h of the three functions z(sa); &(s,a) or

y(s,a) is strictly concave or strictly convex Throughout, we use. the

fact that v"(s) is continuous on S (Lemma 5, Chapter III).

Case (i): Y(sea) strictly concave or strictly convex in a

If '(sa) is strictly concave in a, then so is $(s,a)v'(s) -

Aa(s,a)v(s) + 'Y(s,a) This function is minimized by either the action

a w aI(s) or a m a2 (s), so this CaSe reduces Lu tle finite dction 4

situation and Corollary 10 applies The situation where y(s,a) is

strictly convex is covered by Corollary 12

Care (ii). o(s.a) strictly concave or strictly convex in a

By reasoning similar to the above an admissible control is

optimal provided v(s) changes from zero to a non-zero value only a

finite number of times as s increases from r0  to r1 . Suppose not,

so that in any neighborhood of s r. S, say, the function v(s) changes

sign infinitely often dS S + s By continuity, it is necessary that

v() - v'(s) - min \(s~a) - 0 Since ' (a,a) is aftine in a,
acA S

min 1(s.a) - min (s aj.)) By analytizity, min m (s,a) is either
a;-A - ,2all%

S s

zero, positive or negativa for all small enough s s, we examine
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these three situations In the first situation we must have for all

auch: a thUL v(s) , 0, a contradiction. Secondly, if

min y(sa) j for all small enough s s, there will exist a
acA1sequence s 4 s such that v(sj) 0. v7.) 65 0. and v"(sj) 0 0

But for any large enough j and some a c As, we have

ItI

v"(S ) - - 6 (s ,a )v'(s ) + XO(s Jaj)v(s ) - Y(8j,a )

< -¥(sa ) - min Y(s a) , 0' a A
S

by assumption, a contradiction, As the third and final situation,

suppose min j(sa) C 0 for all small enough s s There exists a
aEA

sequence sj w s such that v(s.) , 0. v'(s)= 0. and v"(s.) 0

There also exists a corresponding sequence a. c A s uch that icr all
3

large enough J, Y(sj,a.) 0 By the Optji.cllty, condition toL any

8. ,

!ii

.1-_-v" s ) - ,'.(sj a )v (s ) + (s~. a ) ". s a )I J -- .i 3 3 3

i Thu! for all large enough j we have V"(,) 0. a contiadiction

Case (iii). '(s,a) stii .tly con .ave or sLrlctly con\vex in a

I By reasoning sirilar to the above, an odnissible contiul is

cptimal if v'(s) changes from zero to a non-zero value only a rirrit,

-3 -
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number of times am a increases from r0  to r. Suppose not, so

that in any neighborhood of s c S, say, the function v'(s) changes

sign infinitely often as a s . By continuity, we must have

v,56) v"(;) - 0 Define y(s) - v(s) - v(;) so that y(s) - y'(s) - 0

and

y"(s) -min {O(s,a)y'(s) -Xa(sa)y(s) + y(sa)
acA

where Y(s,a) - y(s,a) - Xc(s,a)v(s) Note that y(s,a) satisfies

the same hypotheses as y(sa) In particular, min T(s,a) - j
atA

min Y(s,fi(a)) and this function is either positive, zero, or negative
ial,2

for all small enough s >s We now examine a hierarchy of situations,

If min T(s,fi(s)) > 0 for all small enough s > s, then by
i-1,2

differential equation theory we have that y(s) > 0 and y'(s) > 0

for all such a , Thus there exists some sO 0 ' in this neighborhood

with y'(s0) - 0 and yo 0 Then by Lemma 10 of Chapter III we

have y'(s) > 0 for all s s s in the specified neighborhood of s,

a contradiction, If Y(s,fl(s)) and Y(sf 2 (s)) are both non-positive

for all small enough s > 90, then a similar contradiction is obtained.

As the final situation we need to consider, suppose T(s,fl(s)) 0

bur Y(sf 2 (s)) < 0 for all small enough a s s (the proof for

.(sf (s)) , 0 , '(sf 2 (s)) is simiilar and left to the reader). Define

w(s) - v(s,f 2 (s))/[a(sf 2 (s))] Now w(s) < 0 for all small enough

s , and v"(s) - 0 implies w(s) - 0 . Since w(-) is analytic, ,:e

must have w'(s) < 0 for all small enough s , s First we'll show

that y(s) < 0 for all small enough s , 6 If s > s is such that
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y (s) > 0 and y' (s) =0 then

y"(s) > Aac(s,f (6))y(S) - (s~f (8))

>AOL (s, f2(s))w(s) - 'Y(s, f2 (s)) - 0

The continuity of y"(s) and y(s) >0O imply y'(s) > 0 f or all small

enough s > s, a contradiction.

We now assume Y(s) < 0 for all small enough s > sand show

y'(s) - 0 implies y"(s) has the same sign as y(s) - w(s) . This

fact is immediate if f (s) is an optimal action at this s . Alter-

natively, if f (s) but not f 2 (s) is optimal, then

-Xa(s,f 2(s))w(s) + 7(s,f2 (s)) - 0

*-Xci(s,f 1(s))y(s) + 7(s,f1 (s)) - -y"(s)

*-Xca(a,f 2(s))y(s) + Y(s'f 2 (s))

so y"(s) <0 and y(s) < w(s).

We now make the concluding arguments by considering the three

situations corresponding to the sign of y'(s) for all small enough

s s aFirst, we have y(s) <0, so y'(s) > 0 for all small enough

s , leads to a contradiction. Secondly, if y'(a) ,0 for all small

encugh s >, then y'(s) - 0 implies f.,(s) is the unique optimal

action, because otherwise f (s) is optimal, y"(s) , 0, and, by the

continuity of y"(s), a contradiction is obtained. Hence YINs) _ 0

for all small enough s > s iLaplies some admissible control is optimal,
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This is because if (s,a) is convex with respect to a then
-.

8(s,a)y'(s) - Xa(s,a)y'(s) + T(s,a) is concave and by earlier reason-

ing, the optimal control is piecewise continuous in this neighborhood-

On the other hand, if B(s,a) is strictly concave with respect to a

then the optimal action is unique for each small enough a > a, in

which case the optimal control is continuous in this neighborhood.

As the final situation, suppose y'(s) assumes both positive

and negative values in every neighborhood of By the preliminaries

above, there exists a sequence {s + s such that y'(s,) - 0; j
j

even implies y"(s) 0, y(s 1 ) > w(s and y'(s) 0 0 for

8 F [ysJ j 1]; and j odd implies y"(sj) 0, y(s) < w(s ), and

y'(s) < 0 for s c [ssi_1] . Thus if j is even we have w(s)

crossing y(s) from below as s increases from Si to sj.l Since

y'(s) i 0 for all such s we must have w'(s) > 0 for some such s,

which is a contradiction for large enough even j , Hence in every

situation either some admissible control is optimal or a contradiction

can be obtained, and Theorem 13 is proved.

Corollary 14 Let the hypotheses of Theorem 13 be satisfici except

that, if S is an interval with d(sL. - I and b(s,a)d(s,a)-  affine,

then c(s,a)d(s,a)- I is either affina, concave, or strictly convex ij

a for all s e S Then an admissible optimal control exists.

Proof The proof of Case (i) in the proof of Theorem 13 goes thrcugh

without change.

-36-



Corollary 15, Let the hypotheses of Theorem 13 be satisfied except that

if S is an interval in the decomposition of S then one of the three

functions d(s,a) , b(s,a)d(s,a) " , c(s,a)d(sa) -  is analytiz in

(s a) jointly on S - K and either concave or convex but not affine

in a for all s c S, and the other two functions are affine in a

for all s c S0 Then an admissible optimal control exists.

Proof. In view of the proof of Theorem 13; it suffices to show that

ii f(s,a) is some function which is analytic in (s,a) jointly on

S K and concave but not affine in a for all S E S , then f(s,a)

is strictly concave in a for all but a finite number of s E S (the

proof for f(s,a) convex is similar and Left to the reader) Since

f(s,a) is not affine in a, there exists some ; c S0  such that
-2

f(s,a) is not affine. The analytic function -__ f(sa) is thus nega-

tive for all but a finite number of a E K including, say, a F. A-2
It follows that the analytic function ---f(s a) is negative for all

Oa 2
but a finite number of s c S, in which case we must have -2f(s:a';

3 a

non-zero and f(s,a) strictly concave in a for all but a finite

number of s E S

J 5. Ajlication: Control cf a Dam

Suppose that the water level of a reservoir behaves like a sta-

tionary Markov process and fluctuates indefinitely in a continuous

j fashion between the numbers r r1, which correspond respectivelv to

the bott,,i of the reservoir and the top of the dam. Furthermore,
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suppose that the water level can be controlled to a certain extent

by discharging water from the reservoir and that there exists a cost
or utility rate associated with alternative discharge ra~es, Finally,

suppose that there exists a second cost associated with the water level

being at a particular value for one unit of time. Then the problem of

optimally controlling this reservoir system may perhaps be stated as

the problem of optimally controlling a conservative diffusion process,

It will be assumed that the water level of the reservoir behaves

like a controlled diffusion process with reflection, or possibly reflec-

tion combined with adhesion, at each of the boundaries r0  and r

The control action corresponds to the rate of water discharge through 1
the dam and the control will be a piecewise continuous function of the

water level, In addition, it is assumed that the costs of the reservoir I
systemn can be represented by a continuous movement cost, that is, the

sum of the control and water level cost rates will be a continuous

function of the discharge rate and the water level. Thus the diffusion J
proce'ss will be conservative, and in the case of undiscounted costs the

optimal control will be that admissible control which yields the minimum I
expected cost per unit time. In the discounted cost case the optimal 1
:ontrol will yield the minimum expected discounted ccst, which will be

a function of the initial water level. j
This model is essentially a generalization of one by Bather [1].

His model assumes the reservoir input rate behaves like ordinary j
Brownian motion with positive drift, that a cost rate is associated with

alternative discharge rates but not with alternative water levels, and

that all controls must be continuous functions of the water level, In
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addition, if his water level process becomes negative -hen he assumes

the water level is actually zero, so chat pu:e reflection is impossible-

Finally, his only optimality criterion is ,:.at

expected utility per unit time.

Example, This example of controlling a reservoir uses th-2 discounted

cost criterion for evaluating optimality The state space S and the

set-valued function A of admissible actions equal the unit interval5

The diffusion coefficient equals the positive constant A: and the

drift coefficient equals B(l - 2a), where B is a positive constant

The continuous movement cost is a convex quadratic function of the

2
water level, namely ps - ps + q, where p > 0 and q are arbitrary

numbers, The boundary conditions, at s = 0 and s = 1: are pure

reflection. The intuitively obvious control is to try to maintain the

1
water level at s = 1, that is, maintain a mininium discharge rate

I
(a = 0) when the water level is less than - and maintain a maximum

2 ..

discharge rate (a = 1) otherwise- If this ccnjccture is corxecc

then by synLetry the derivative of the minir.a:1 expected discoen~ud
! I

cost will equal zero at s = Solving equation (I) on [0 -] wiL h

a(s) = v'(0) v'(1) = 0, we obtain the ;olution

ls  X s

V(S) I"e + L e + -(ps ps + q)

+ Ap+ -- (2ps - p) + -- s
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where L e 2 +

2

2 e-

1-1 \U.

~2'e2 - _BJ

Ln 2 +"

p 
-

2

and *-A- 
1B -V A 2 B-1 + 4AA

2 2

Ii p.

Similarly, solving (1) on 1, with a(s) I and v'(-!) -v'(1) 0

we obtain

IB

V(s) ,, N e - I  + Ne2e + I (ps 2. ps + q) "

+ 2A B2ps p) + 22 - S] c

A 2 A 
-2 "2

where N =where NI  J :

22

12 11e - J ,2 (eI -)

and N
I22
2 0
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After verifying that v(s) is continuous at s - ,'e conclude that

v(s) is the expected discounted cost corresponding to the admissible

control a(s) - 0 for 0_< s < I and a(s) - 1 for - _ s , i It

remains to show that a(s) is optimal, Since it can he shourn that

v(s) - v(1 - s) for all a E (0,1], by (9) it suffices to show that

22
- v'(s) < 0 for all a c [0: I ] , Since the continuous movement cost

ps - ps + q - q for all s c (0,1), we must have v(s) -

fe-tqdt for all s E S Ia particular, Xv(O) c q . Similarly,

0
1v(I) > q - It follows that v"(0) - 0 , v"( 1 We know that

iI > 0, Z < 0, and L, - 0 . If L > 0, then v'(s) would be
2 2

concave, a contradiction. Thus, with L < 0. there exists some
2S E [0, such that v'(s) is convex for 0 s _s and is concave

2 .
1 

ifor s< If v'(s) > 0 for any s c (0.1, then a contca-

diction is obtained, so we must have a(s) optimal and v(s) the

minimal expected discounted cost,

6 Application: Control oi Pollution.

Suppose that thE index of pollution iS ConLrained to tall

between zero and some positive number This ,:oula be the case, tot

example, when dealing WiLth 4n air basin or a body of water Assume

that a factory, a collection of automobiles, or a similar polluting

rnechanism wants to co,ntrnl this index of polluticn by optimaIv

choosing the amount of its waste products that .s being emitted 3s a

Ii
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pollutant as opposed to being processed in a pollution free manner-

Finally, assume chat there exists a cost to the controller for each

level of control as well as to each value of the pollution index Then

the class of controlled diffusion processes used as models of dam-

reservoir systems may perhaps be used as models of pollution systems- ..

The state of the process will correspond to the index of pollu-

tion, and the boundary behavior, at zero and the maximum index value,

will be reflection or possibly reflection combined with adhesion An

admissible control will be a piecewise continuous function of the state

space that will represent the portion of the controller's wastes that

is being emitted as a pollutant. Presumably, (i) the bigger the control

value the smaller the control cost rate (less needs to be processed),

(ii) the bigger the control value the bigger the drift coefficient; and

(iii) the bigger the pollution index the greater the pollutant cost

rate An optimal control will be an admissible control which yields

either the minimal expected discounted cost or the minimal mean cost

pef unit time

The choice of the proper upper boundary condition is open to

question, One possibility other than reflection is absorption, with

the interpretation that in the rare event the pollution ever reaches a

sufficiencly high; intolerable level, then a "disaster" would occur at

some high cost If it can be assumed that the pollution index rarely,

if ever, attains its upper limit then the choice of the upper boundary

condition becomes moot This might be the case if the pollution index

is thought of as the percent of the natural medium which has been

replaced by poilutants The oxygen in an air basin would never be
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completely replaced by smog, for example, so the drift and diffusion

coefficients of the corresponding diffusion process model would be

chosen accordingly. Then the process would rarely be affected by the

upper boundary, so its effects could largely be ignored,

Example. This example of controlling pollution uses the discounted cost

criterion for evaluating optimality. The state space S and the set-

valued function A of admissible actions equal the unit interval. The
S

diffusion coefficient, drift coefficient, and continuous movement cost

equal respectively A, B(2a - 1), and Cs + D(l - a), where A, B C. A

and D are arbitrary positive constants. Assume the boundary conditions

1are equivalent to pure reflection. In view of the boundary conditions,

the solution of (5) for the minimal expected discounted cost v(s)

Imust be such that, in some neighborhoods of the boundaries, v'(s) , D/2B

and the optimal control a(s) equals one. If a(s) I for all s e S

then

1 is 2
v(s) = Le 1 + L e 2+ C s + BC

2 .2

C 1

where Ll Y'2( e2e l)

e e

Le2k
-2-2 2l1 18

A-B+ A + 4A- "

1'12

I
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.AB -VA-2B 2 + 4AXand £2 =

The derivative v'(s) is then a concave function ahaa equals zero at

a 0 and a I and assumes its maximum value at

X2L
1- in -

9l 2 2 \iL~

If v'(;) < then v(s) equals the minimal expected discounted cost
2B

and the optimal control is to process none of the wastes at any level of

pollution, that is, pollute as much as possible Suppose, on the other

hand, that v' (;) >D/2B, that is,

XIL 1 + k2L 2 +T

If a(s) - 1 for all s c [s 0,91 ), where 0 <~ s <S 1 and

v'(S) v'( t ) - D/2B, then the derivative v's) is concave on

(sol's]I in which case a(s) - 1 is not optimal. Hence if v'6i) ,1

there exist two numbers 0 < a ro s < 1 such that if a c [Os 0e U

(olutithen the optimal control is to pollute as much as possible, while

if S F '(SlO) 1 then the optimal control is to process all of the waste

products
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7. Aplication: Control of a queueing System,

Suppose a queueing system is characterizec hy having a finite

waiting room, that is, the length of thu queuo is less than or equal

to some number. In addition, assume that the length of the waiting line

can be controlled by the servers, such as by changing rhe service rate,

Then let the number of customers in this queueing system be represented

by a controlled diffusion process fluctuating between zero and the

capacity of the queueing system. The behavior of the process at these

boundaries can be either reflection or reflection combined with adhesion,

The control action corresponds to the service mode, for example, the

service rate, If there are costs associated with alternative queue

lengths and control actions, then a control which yields the minimal

expected cost of the diffusion model will be an optimal control of the

queueing system, Presumably, the queue length cost will be an increasing

function of the queue length, and controls with a greater tendency to

shorten the queue length will be more expensive

An obvious shortcoming of this model is the fact that the length

of a queue is a discrete state process whereas the diffusion process is

continuous In cases where this continuous state approximation is not

sufficiently accurate, however, it may be possible to construct a

diffusion process so that a discrete process which can be extracted

from it will have certain desired properties This discrete process can

be defined as follows- For some positive integer N, let the diffusion

process be defined on [O,N) and let the discrete process have N + 1

states corresponding respectively to the integers O,13'o,N Then the

discrete process will occupy state i if i .'as the most recenL integer
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value attained by the continuous process sample path, The discrete

process will then enter state i + 1 (or i - 1 ) at the epoch when the

continuous process first attains the value i + 1 (i - 1)

There is no assurance that the diffusion process can be con-

structed so that the first passage times of the extracted discrete

process will have some specific probability distribution In particu-

lar, exponentially distributed first passage times cannot generally be

obtained. However, the following discussion will show that an arbitrary

set of mean ficst passage times can be represented by the discrete

process extracted from a Brownian motion with properly chosen boundary

conditions

Suppose that the queueing system has capacity N and that four

items of data are specified; the transition probability p from state

1 to i + 1 and the mean occupation time 6 in state i, for i - 1,2,

.:N-1 the mean first passage time t from state 0 to 1 ; and

the mean first passage time u from state N to N - 1 We want tc

cal:ulate the diffusion coefficient d, the drift coefficient b, and

the boundary conditions r0l 1O rif 0 (we let 0 0- .1 " KO a K, a 0)

so that the extracted disciete process will correspond to this queueing

system in the specified manner,

Utilizing the fact that the expected state of the process upon

exit from the interval (i - l,i + 1) given initial state i equals

the pioduct of the drift coefficient and the first passage time 6,

we conclude that b - (2p - 1)/, Utilizing standard diffusion process

theory (see, for example: Mandl [16, pp. 100-1G2]) to calculate the mean

first passage time in terms of the drift and diffusion coefficients. we

-46-



Ij'I

conclude for b # 0 that the diffusi'on coerficienc d must be the

unique solution to b - coth(b/d) - csch(b/d) . Note that a unique

I solution for. d always exists because coth(x) - cschlx) increases

monotonically from -1 to 1 as x increases front - to If

we assume that 6 < t, 0 1, and b # 0, then by standard diffusion

process theory again the mean first passage time from state 0 to state

1 equals d( 0  1 - e -'/')4 Setting this equal to t allows

b 0 l ebb

one to calculate the coefficient o. describing adhesion at boundary

r0  Similarly, if b - 0 then d - 1/26 and oO  - 6 . The cal-

' culation of , 1 and c1 proceeds similarly.

Example.. This example of controlling a queue uses the discounted cost

criterion for evaluating optimality, We have S - [O,N] and As - [O.R)

The diffusion coefficient equals the positive constant A, the drift

1 coefficient equals -a, and the continuous movement cost equals

Cs + Da, where C and D are positive constants, Thus larger control

values i4ll tend to shorten the queue length at the expense of a greater

control cost, The boundary conditions are equivalent to pure reileution

* The calculations for this example proceed similarly to those for the

example in Section 6. In some neighborhoods of the boundailes the

optimal control a(s) must be zero. 1f a(s) - 0Lor all s t S

J then the expected discounted cost is

- e "  
- 1 I;. c - e 1 -

v ( s ) 4-N .- - N e -- G

e e -4
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where i A The derivative v'(s) attains its maximum value at

-2 2 e 2___

- N/2, so if v'(N/2) _+ D then a(s) -0

is optimal and v(s) is the minimal expected discounted cost. On the

other hand, if v'(N/2) D, then there exist 0 ' so c s < N such

that if a c [0,9 0 ) U (s,,N] then a(s) - 0 is cptimal, whereas if

s C (s0,s1) then a(s) - R is optimal.

8 Application: Making Optimal Investments *

Suppose the owner of an investment fund has available to him a

number of alternative investment opportunities, each of which is charac-

terized by a rate of return and a value of risk that are constant with

respe:t to time Moreover: suppose that the value of the investment

fund is characterized by being bounded by two numbers. For example;

the value might always be non-negative and if the fund's owner ever

acquires a million do.Liars, then he would stop investing If the owner

wants to make the oprimal choice of investments for every level of the

fund's value, then his prcblem can perhaps be sol.ed by the consideration

or an appropriate .ontiolled diffusion process

Let the value of the investment fund correspond to the state of

the diffusion process and assume that the behavior cf the fund at the

boundaries zan be represented by some choice of diffusion process

boundary conditions For example, the fund value could behave like

rerie-tlon at the lower boundary and absorption at the upper one The
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map A describing admissible actions is formulated so that, for eachS

s c S, there is a one-to-one correspondence between admissible actions

a e A and the investment opportunities which are available when the5

fund's value is s . Let the continuous movement cost reflect the

utility to the fund's owner of the fund being at a particular level for

one unit of time, and let the costs associated with the boundary condi-

tions be defined in a corresponding manner. Then the control which

yields the minimal expected cost for the controlled diffusion process

will correspond to the optimal investment policy.

The value of risk associated with an investment is generally

specified by the variance per dollar invested. Thus it is convenient to

describe each investment opportunity by a pair (al,a2) where a1 > 0

is the variance per dollar invested and a2 E E is the yield, that is,

rate of return. Then we can let A be a compact subset of E x E so5

that each admissible action (a1,a2) e A corresponds to some investment

opportunity. Normally, the map A is a constant with respect to a £ S,

but not necessarily so. Certain investment opportunities, for example,

might be available only to funds of some minimum size,

In formulating this controlled diffusion process investment

model, it remains to specify the drift and diffusion coefficients. Given

a specific investment opportunity, the expected profit and standard

deviation per unit time for a fund will be proportional to the fund's

value. Consequently, if the fund is invested in opportunity (a11a2) E Aa

then the appropriate coefficients for the diffusion process model are
2

d(sa) - s a1 and b(sa) - sa2
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I. £ For this opcima. investment example we assume the fund's

value is bounded as 0 - r s " r1 <, and we want to minimize the
bn d

probability of reaching i0 before r1 This problem can be solved

by considering a non-conservative diffusion process with undiscounted ;

c.^Srs.

Suppose ea:h boundary condition is pure absorption with costs

A0 M 1 and I 0 Then with a zero continuous movement cost; the

minimal expezted cost v(s) is the minimum prcbabiity of reaching

r0 before r when starting at s Clearly v'ks) _ 0: so by (14),

we want to choose a z A so that
s

b~s~a naxb(s.a)
d(s,a) max d(sa)

aeA
s

In particular. suppose As! b(s a) and d(sa) are as formulated

above with A constant with respect to a € S If a2 ' 0 tor some

(a :a2) E A. then max rsa2- -0 and this corresponds to a favorable
12 ac a 2a1jaLAskS al

game Note that if several investments have the same positive yield

then the least risky one will maximize (sa2/s
2a1), so conservative

piay is optimal On the other hand, suppose a2 , 0 for all

(aI a2) As , this cor responds to an untavorable game, g. , a casino-

In t;his case, if seve~ai investments have the same negative yield; then

the riskiest cue maximizes (sa2is2 a ) that is. bold play is optimal
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CHAPTER III

MULTI-PERSON CONIROLLD DI:FSiONS

This chapter generalizes the concept of a controlled one-

dimensional diffusion process by allowing the process to be controlled

by N persuns If the process is controlled by two persons with

opposite objectives, then the problem of optimaily controlling this

process may be viewed as a zero sum, two-person gaoe On the other

hand, if the process is controlled by N 2 persons with possibly

different ohjectives, then the problem of optimally controlling this

process may be viewed as a non-zero sum, N-person game,

The results in this chapter are intimately zonnected with those

for single person controlled diffusions (see Chapter Ii and Mandl [16])

In addition: mini.:,x pDoblems in the theory of 'JJ.fusions have been

tteated by Girsano\ [10]. The multi-perscn controlled diffusion

process is formulated in the following section :he zero sum, two-

person game problem is discussed in the succeeding four sections, and

the non-zero sum, N-persvn game prob] ei - treated in the final five

sections. Both dis-ounted and undiscounted _o!tF a.& considered for

both game problems, and e.,istence theorems are provided In addition,

several possible applicacions of multi-porson controiled diffusions

are given A majo. rCsuiL ot this chapter it that the value of a zero

sum, two-person game is the unique solution o; a differknt.,il equation
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1. The Multi-Person Controlled Diffusion Process 3
The multi-percon controlleA diffusion process is formulated as 3

in Chapter II, only taking into account the multiple number of

controllers. Consider a diffusion process with state space S, a 3
compact interval (r0 .r1 ] of the real line E, which is controlled by

N persons (integer N _ 2 )- For each i i,2:. N, some positive I
integer ni , and some compact set Ki C E

n  the th personIs

control is a vector-valued function on S with range Ki  Let Ai s

be a point-to-set map from S into Ki such that A' is piecewise I
continuous in s in the Hausdorff metric and for each s c S the set

A is a non-empty compact subset of K Each time the process is I
8i

observed in state s the ith person chooses an action a from the

set A The set M of admissible controls for the i person con- I

sists of all piecewise continuous functions ai(s) on S with range in

K such that the action a (s) E A for each s r Si I s

Let M = M M 'll K- K - K, a(s) I
(a (s) a (a)), and A CAS. 'AS), so that M is the set of

admissibie .ontiols, a function a(s) is an admissible control if and

znly if a(s) t M, and a( ) M implies a(s) F As  fcr each s E S

Thrcugh'aut this chapter it should be clear from the context whether the

iecte: a denotes an admissible contrLI a - a( ) , M or an admissible 3
action a z As  fcr s~me s S ie map As is characterized in

Chapter S ISe assume M . hereafter without further mention

The definirion of a multi-person controlled diftusion process is 3
a slight generalizatlon of Mandl's [16; p 157] controlled diffusion U
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process, Let d(sa) be a continuous, positive real-valued function

on S x K . Then for a(-) c M the piecewise continuous function

d(s,a(s)) is the diffusion coefficient or the process, Similarly,

iet b(s,a) be a continuous real-valued function on S - K so chat

b(s,a(s)) is the drift coefficient of the diffusion process,

Following Mandl, with a given Lontrol a() c M the multi-person

controlled diffusion process is completely specified by the generalized

classical differential operator

d 2 d
D - d(s,a(s))-L7 + b(s,a(s))Tr• de 2

together with Feller's [7,9] boundary condition

v(r ) + ejv(r.)- Fv(s)d (5))- (-l)J v'

S

+ z(D')(rD ) - 0, J - 3,1;

where v(s) is some function whose second derivative is piecewise con-

tinuous on S At each boundary ru rI tle tc ur non-negati.e parap -

eters <, . - and c at least one of .:h1ch must be positl e

correspond respectively to the phenomena of absorption, adhesion reilec-

ticn and instantaneous return Correspondin, c is the probability

3 distribution function _.(s) here J ( - 1 This hcundarv

(ro, rI)

condition is interpreted more fully i- Chapter II

The multi-person controlled diffusion process generates costs

-53-
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F •
according to its sample path and control (Mandl (16, p 148)). With the

*9

zero sum, two-person game problem, exactly one stream of costs is gener-

ated, as is the case with the single person controlled diffusion

(Chapter II) But with the non-zero sum, N-person game problem. exactly

N streams of costs will be generated, wich one stream corresponding to

each controller The costs or a multi-person controlled diffusion will

be formulated below for the N-person problem, but it should be borne

in mind that the formulation for the zero sum problem is exactly the

same, except that the subscript i relating the cost streams with the

controllers will be dropped.

Each cost stream is comprised of the same three types of costs

that were specified in Mandl [16] and Chapter II The continuous move-
.th

ment cost for the i person is defined by the bounded, continuous

real-valued function c (s.a) on S -K 1  let c(s,a)

denote the N-component vector of these functions The cost for the

Ith person due to instantaneous returns from boundary r is expressed

by the real-valued function ji (s) on S. which is inregrable with

respect to uj(s), iec >(s) denote the vector of these functions.

Finally, the cost for the ith  person due to the Lermination (absorption)

of the process at boundary r is Ji and j denotes the vector

of these costs-

it C.(t) is the total of the ith person s costs generated by

the process up through time t, and C(t) - (C1 (c)- 'C (t)) is the

ve:Ltcr of Ehese CosLs, then the N-component ,ectoi

v(s) = E fe-' tdC(t)

0
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_ _ ... -- rm1 rfI

denotes the conditiona.l expectation of tiiC totai discounted costs of

the procesa givcn an initial state s, a control a(,) c M, and a

discount factor e , -C . Fion, MIanJl jl6, p, 149j we have the

following result,

- Theorem 1, The vector of expected discounted costs corresponding to

a(-) c M is the unique function v(s) on S such Lhat v'(s) is

continuous,

(1) d(s,a(s))v"(s) + b(s,a(s))v'(s) - Xv(s) + c(s,a(s)) - 0

holds for every s e (ro,r 1 ) which is a continuity point of a(s), and

(2) + j )v(r 6 - v(s) + (s))dw (s) (-I) v'(1

+ 0 (Av(r.) - c(rj a(r ))) - ' - 0 ,j-0,

If the process is non-conservative ana neither boundary is purely

adhesive, that is

+  , j 0j <j + 0.l

ther, by Mandl [16, p. 152] the vector v(s) E C(-) of the expected

3 Jtotal undiscounted costs is finite and is the unique solution of (1)

and (2) for k = 0 ILIf the process is conservative (,. + <I

I then the total undiscounted costs may be infinite The vector

', ) in the following theorem, which is an imrnediate



Li

'4

consequence of Mandl (16, pp. 152-157, 168], can be interpreted as the

vector of mean costs per unit time. -

Theorem 2. Let K0 a K, W 0 and assume at least one boundary is not -

purely adhesive, that is, rO+ 6 + T1 + 0 > 0 If v(s,X) is the

vector of expected discounted costs corresponding to A > 0 and some

a(.) e M, then

lir Xv(s,X) - 0 and limr (sA) - w(s)
A+X+O

where 0 is some vector independent of the state s, and w(s) is

some absolutely continuous vector-valued function on S ,, Moreover,

P(lim t- C(t) - 0) - i

and (G,w) is tae unique pair satisfying

(3) d(s,a(s))w'(s) + o(s,a(s))w(s) - 0 + c(s.a(s)) - 0

for every s E (rOr 1 ) which is a continuity point of a(s), and

S v

(4) e f( f w(y)dy + vJ(Syd~.j(s) + (-I)J' w(rj) I

+ C (c(r ,a(r )) - 0) 0 , J - 0,1
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2, The Zero Sum, Two-person Game Problem,

In this and the following three sections we consider Jiffusion

processes which are controlled by two persons (N - 2), but which gener-

ate single streams of costs. The persons have cpposite objectives; the

first wants to minimize the costs while the other wants to maximize the

costs. Note that this zero sum game can be regarded as a special case

of the non-zero sum game problem for N = 2 by letting the second

player's costs equal the negative of the first player's,

le shall consider a single stream of costs and therefore omit

the subscript on all cost symbols. For any partic-;Iar problem, player 1,

who operates the first control component, endeavors to choose a control

a ) C M1 so as to minimize the expected costs generated hy the

process- Player 2, who operates the second control component, endeavors

to choose a control a,(.) , M so as to maximize the costs generated

by tae process. By a solution to this game is meant some admissible

control which is a saddlepoint of the expected cost function. Thus, if

player I unilaterally deviates from this opti:,al control, then the

expected costs cannot be decreased but they may increase. Similarly,

player 2 can unilaterally only decrease the expected costs.

The following two sections provide results respectively for the

discounred cost case and the undiscounted cost case The method for

solving a problem is basically the same in each case A differential

equation is solved and the solution is used to determine the saddlepoint

i f a function with respect to all admissib]e controls. If this saddle-

point exists, then it is used to obtain an optimal control, that is.
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E!

I
a solution to the zero sum, two-person game. Section 5 indicates a 3
possible application of this model to optimal welfare policies. I

3. The Zero Sum Problem with Discounted Costs. I
Let v(s,a1 ,a2) - v(s) denote the expected discounted cost of 3

a process corresponding to the admissible control a - (ala 2) C H I
Then v(s,al,a2) will be the unique solution of (1) and (2). The

control a c M is said to be optimal if for all a1  M., all a2 C M2P

Ii
v(s'alp&2 ) -- v(s~a'a 1 v(s~al,a2),

andhll amewehav

in which case v(s,al 2 ) is said to be the value of the game. We shall

later prove that the value of a game, if it exists, is provided by the

following,

Theorem 3, There exists a unique solution v(s) to I
(5) v"(s) + min max (d(s,a,a 2 ) -lb(sal.a)v ' ( s ) 1

a e- acA2  2 bs 1, 2)'s

- Xv(s) + c(s,ala 2)]} = 0

satisfying
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1 (6) (a + 1j)v(rj) - Gj f(v (a) t 1 (8))a () - (-l)w v' (r
S

+ C (xv(r - .--0 0,,

where y = min max c(rj ,al a2), j - 0,1
ear cA1  a cA2

a1  r 2 r

- i

Before proving this theorem, some notation will be introduced and a

number of preliminary lemmas will be proved.

Define: a(s,a,,a 2) a d(s,a,a 2) ,

6(s,ala 2 ) = b(s,al,a2 )d(s,ala 2) -

y(s,a,,a2) - c(sa 1,al2)d(s,a,,a 2)

g1 (s,vlv 2) = v2 ,

g1 (svlV 2) - -min max {(s,ala 2)v -Xa(s,a,a 2)v1a eAl a :A2
1~ ~ aC 8 a A 2 1

+ Y(s,a,,a2)

and g(svv 2  ) 11 2)

(

1 We have the following result from BergP [2, pp, 115-116).

I Lemma 4. Let X and Y be compact topological spaces. If f is a

lower (upper) semi-continuous numerical function on X Y and is a

-59-

LA



I I

lower (upper) semi-continuous mapping of X into Y such that for each

x. rx o , then the numerical function h defined by

h(x) - sup(f(x,y) y c rx} .

is lower (upper) semi-continuous on X
,

1 2Lemma 5. If A and A are continuous at s, and (vl,v 2 ) areS S ..

arbitrary, then g( ,v1~v2) is continuous in (s,vl,v2) at (i,v1,v 2)

Proof. For 1 1 .2 lee C C E denote a compact set containing An
i

open neighborhood of v With the notation cf Lemma 4, identify X

with S x K 1 C1  C 2' Y with K2, f with k(s al,a2)v 2 - Xa(s,al,a )v

r 2+ '(s.a I a2) and . with A Concl..de by Lemma 4 that the numerical

function

max {Ois aa )v .a(s,al,a)v + "'(saa 2 )}

Zs .- 1

is continuous at (s5;V.v 2 ) for all aI E K1 Repeating this reason-

ing in a simila: manner. conclude that g2 (sv;vl2), and hence, trivially,

g(srvl"v2); are continuous in (s,v1 ,v2 ) at (S.,v:v 2)

In the foilowing ilamia, we use the norm I[g(s vl,v 2 )I

max isupIgl(sv, v 2 )I; suplg 2(s,v1 oV2)l1
sLS sS

Lemma 6, The function g(s,v 1 v 2) is Lipschitzian with respect to

(V V2  that is for some positive constant L not dependilag on
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I I on 9, v1, o~,

jiIIg(s'v 1'V 2 ) -gs v 2  L1 L~(v Y2)- (v l'v 2)N

Ifor ever 9 ac- S and every pair (V Vv2) (v1.,v 2)

*Proof, Let s, (v1,v2), and (v l'v2) be arbitrary and without loss

of generality assume 92 (s'v 1 .1 2) g2(s~v13v2) Suppose -aIc S

- is such that

-g2('vl 1 v2) * max2 (B(S"i 11a 2v 2 - cI(sia 19a 2)vl + (s~a1.a 2p
2cA,

- 2and suppose a2 c A is such that

max t B(sa,a,)v2 )'z(sa.a)V1+ ' sN.

I - 8a(s,a 1.a )v2 - a(s,a1.a2) + Y,(s ala 2

1 Then. -9 (S'v1,v)

a CA' a LA2  21 1 12

~a FA2  1 22 12 1 ~ 112
2s
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so g2 (s~vv 2) - g2(sv 1,2)

max{8(a - ,a 2 )v 2  Xc(s,; " + y(,a2 -

- max {8(sa 1 a2 )v2 - X.(s,a,a 2)vI + y(s, ,a2)}
a CA2  122 a 112
2.

$(a1a2) 2 - i(s, 1a , 2 )v 1 + Y(sl,a 2 )

-{(a.a1 a 2 )v 2 - XCL(S'; 1,;2)v, + Y(Soav; 2))

< l 1 2 - v 2 1 + AC2  - vI!

where C1 - max 13(s,a 2) and C2 a may (sala)J

alcK I  alK

a CK a eK
a2CK2 a2 K2

Thus the desired result follows with L - max{l,C1 + XC2 }

In subsequent lemmas we use v(s,u1 ~u2) to denote the solution

of (5) on S satisfying v(r0,ulu 2) - u1 and v (r0,ulu 2) -u 2

whera, of course, v (s.UVU 2) - -9s- (su 1,u2 ) - This is not to be

confused with the notation at the beginning of this section, It should

be clear from the conteXL whether the second and third arguments of

v(s:'Ou 2 ) are boundary conditions or admissible controls.

Lemma 7. For u!.u 2 e (- , ) equation (5) has a unique solution
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v(s,u1,u2 ) on S satisfying v(ro,ul u2) - u1  and v'(ro,ulu 2) 2

Proof. It suffices to show the equation

s iv21 1 (,, 2)

has a unique solution on S satisfying v1 (r0) - 1 and v2 (r) - u2

because than v(s,ulu 2) 0 V1 (s) . By differential equation theory

and the piecewise cont.nuity of As. Lemmas 5, 6 and a result in

Edwards [6, pp. 153-155] imply the result.

Lemma 8. The functions v(sul'u2) and v'(sul,u2) are continuous,

strictly increasing functions of u2 with limits - as u2  ±s for

each fixed s c (ro,rI ] and each fixed u 1  (-M) )

Proof, We first show the function v'(su l ,-) is strictly increaqing.

Suppose not, so that for some uI C (-0,Q), s0 c (rogrl], and pair

u2  u2 say, we have v'(soulu 2 ) - v'(S oul,;2) and v'(s,uiu 2) 

v'(s u l
3 u2) for all s c [rots 0) . It follows that v"(sulu 2 ) >

V"(sul)U2) for some s < sO  in every neighborhood of s and

V(SoU lu 2) < v(soul; 2) a But since a(s,ala 2) 
> 0 and by continuity

we have v"(s,u1,u2) v"(SulU 2) for all s -s o  in some neighborhood

of so, a contradiction. Thus u2 < ;2 must imply v'(s,'11 u2)

v'(su11;2)1 in which case v(s,ulu 2 ) < v(stulu 2)1 for each

s (r0,r] o The continuity of v(s~ul ,u2) and v'(su VU 2) with
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respect to u2  follows by standard differential equation theory.
Gi

To show the limiting behavior of v(s, 1uU 2) and its derivative,

it suffices to consider u2 -0 and uI < 0 the situaticn with

u > 0 reduces to this case and the proof with u2  -c is simil-r,

For arbitrary uI  0, so c (ro,rl], and L (0,-), it suffices to

show v'(s 0 u i;u2  L for scme u2 (: To do this, we consider A

the differential equaLion

(7) y") -~y'(a) + A.2y(s) - Cy

where C, max IB(s,a Ia 2)ji C > max .(aa 2)I .0
sES srS
a 1EK aK1  -

a2 K2 a 2K 2

and C2 > 0) Now if y(s) is a solution of (7) wit y(rO)

u ( 0') and (rO 2 (_ ) then it is easy to verify that

I ds 0O 2

y:(s) as u2 for each s E S . In particular: with

C - C = min (s,a. ). there exists some constant L, L such that
2 - S 2

-K s+S

if P L F0  + 01  . then the solution to (7) satisfying y(p) - 0

and y'(p) L1  will be such that y'(s) _ L for all s e [p;s O]

Also, with C2  - max a(s,a I a2); there exists some constant u2
SLS
a. :K1

a2 -K2
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such that the solution to (7) satisfying y(r0) u1  and y'(r 0) 2

will be such that y(s) - 0 for somes c r0  and y'()

for all s c (r0 ,]; let y(s) denote this solution on [r0 ']

We now clalm that v'(s 0 ,uIu 2) > L because v(s,u1 ,u2 ) is

bounded below by appropriate solutions of (7). For example, suppose

s E (r0 ,s] is such that 0 > v(s,ul U2) y(s) and v' (S;,u 1 u2) u y,(s)

Then for some (ala 2) c A-
s

(9- .() [C 8 - 0(s,ala 2 )]9'(&)

+ X[c(s,a1 ,a2) - C]v(,ulu 2)

+ AC[v(s,uipu 2) - y( )] + (C - y(g,ala]

Note the last term on the right hand side is positive and the others are
non-negative so v"(Sul,u2) > y"(§) By continuity, v"(s;UlrU 2 ) 2 Y' ()

for all s in some neighborhood of 9 . In particular, if we let A r0
then it becomes apparent that v'(s,uu 2) U y'(s) is impossible with

v(s,ul)u 2) 0 for s - (rOis] , Thus v'(s,ul,u2) y Y'(s) for each
such s and there exists some p .(r0 ' ] such that v(pu u2) =

and v'(p,u1 u2) _ 1

J Now let y(s) be the solution to (7) with y(p) - 0, z'(p) =

V'(P,Ultu2), and C, = C and note that y'(s) - L for all s c [ps o]

By comparing v(s,ul,u 2) with y(s) as we did with yks), we conclude

rhe desired result-
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Lemma 90 For fixed u1  the function

v(r1 u lu 2) - fv(sultu 2)dW () I

is continuous and strictly increasing in u2 and diverges to t- as I
U 2  -, :

Proof, Let u2 < u2 and ; E [rn,rI] be arbitrary. By Lemma 8,

v'(s8ulfu2 ) is increasing in u2 , so v(rl,UlU) - v(sUl:up -

v(rlul.u2) - v(;U 1.u 2) , The function in this lemma is just a convex £
combination of the right hand side of this inequality, so by this ine-

quality this function is increasing in u

Since v'(s~ul1 u2 ) - - as u2 ., ±cs we have for any s c (ro.r I) 1
that v(r;u,,U -2) )-- s 2 as u - Thus, by the convex

combination argument the function in this lemma has the same limits.

Ccntinuity follows from the continuity of v(s,uL.u 2)

Lemma 10. Let 6(s), a(s) and Y(s) be measurable real-valued functions J
on S with j$(s)! C C . i(s) " C, 3 J- and (s)_ 0, and

suppose for some s - [rOr 1 )" u> 0, and u2  0O the function v(s) 1
is a solution to

v" (s) 6(s)v (s) + o(s)v(s) + .,(s) j

saLisfying v(s) - uI  and v'(s) - u2  I
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Then for all s c (;,r) we have v(s) > 0 and v'(s) > 0

Proof, Suppose there is a smallest ao  a such that v'(s 0 ) = 0

Then v(s0) > 0, and by continuity, v"(s) > 0 in some neighborhocd

of s 0 Hence v'(s) - 0 for all large enough s < sot contradicting

u 0 and the definition of s

Proof of Theorem 3., Denote

N e 0 rj (s)duj () + 0 -Y + < X j - 0,1

By Lemma 7 it suffices to show that v(sru1 ,u 2 ), the unique solution

of (5) with v(roU 13 u2 ) u1  and v'(ro,U 1,U2) u2, satisfies

(8) (Xoj + a + <M)v~r ~ul1u2 ) - 0. fV(su 1 1 U2 )dwj()

S

-(-1~) v'(r ,ul,u2) - NO j 0,i,

I. for unique values of u I and There are two cases.

I
0Case 1: e0= -0 0

By (8). u1 = No/(.k- 0 + K ) By Lemmas 8 and 9, the left hand

l I
side of (8) for j = 1 increases continuously and strictly from -

to - as increases from -- to -. Hence (8) for j 1 is

satisfied by a unique value of u2

Case 2. 30 + r 0
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For P c ( denote

fp(s,vlv 2) -min max k((SaL,a2)v2 - *(s,a 1,a2 )v1 + Py(s~a1,a2)}
alcA s a2EA2

lsis

and let vp(su,u 2) denote the uniqu, solution to

(9) v'(u,.u 2) a fP(n:v"(s''u.u 2) Vp(s,,1,,,2 1
and

(10) vp(r 0 ,uiu 2) =u I  vj(r 0 ulu 2) =u

Then by differential equation theory vp(S,UlU 2 ) and vi(sulou,) are

continuous in (P,s1u,,u 2) We seek to show that vl(S,ul;u 2 ) satis-

fies boundary condition (8) for a unique choice of the pair ultU2

We can rewrite (8) for j 0 0 and general P as

(i) e0 JVp(suiDu2)d0 (S) + 0u 2  a ¢(U I
S

where

(i2) ¢(uI) ( + 00 + *o)ul O

We flcst show that for each u I  (- -') n l - (and) there exists

a unique u2  u2 Pu) satisfying (11). But this follows from Lemma I
8; because then the left hand side of (11) is :ontinuous and strictly

41
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increasing in u2 with limits ±- as u2  Note that, since

both sides of (Ii) are continuous in (Pu ,U2), the function u2(Pu 1 )

is continuous in (P,u1 ) °

It remains to show that v(s,u 1 ) = v 1 (su ,u2 (luI)) satisfies

(8) with J 1 for a unique value of ul, that is, there is a unique

u for which

ff

(13) +,o + 8 1+ )v(r 1 ,u I ) - e1 Jv(s,Ul)d~l(S) + i 1v'(r 1 ,Ul) - N

We first show that some u1 c (- ,=) satisfies (13). Since the left

hand side of (13) is continuous in ul, it suffices to show that the

left hand side of (13) diverges to ±- as ul ±o . We d.scuss only

the case u1  +- since the other is similar.

We show this result by considering the limit of Pv(s,P " ) as

P + 0 To this and, for P 0 denote u(P) - Pu2(1,p-I) and
9(p) - pc(p-) Now Pv1 (S,P-l u2 Vp (SlPu 2), so Pv(s,P - ) -

vp(s,1;u(P)) In view of this and (11), u2 - u(P) is the unique number

satisfying

(14) e0J'v
2 (s,l,u2 )d0(s) + oU2 ()2

S

Since y(P) has a limit as P + 0, which we denote by q(0), equation

(14) has a unique solution u2  for P - 0 , Since vp(Slu 2) and

o(P) are continuous in (Ps,u2). it follows that u(P) is continuous

in P and has the limit u2 as P 0 0; we denote u(O) - u2 * In

summary, Pv(sP v (S;l-u(O)) a6 P + 0

We are now in a position to show that the left hand side of (13)
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dv 0

diverges to -' as uI  t- If -- 0(r 0 ,olu(0)) 0, then Lemma 10

applies and v'(s,l,u(O)) > 0 for each s F (r0,rI) On the other

hand, if v6(rol,u(0)) < 0, then by (14)

60 fv 0 (,1,u())d 0 (s) X0 + 0+0 - 7Tv0(r 0 ;l'u(
0 )) Go 60 °

2-
Now 80 > 0, for if not then 70 > 0 and by (14) vI(r 0 -1,u(0))

(\o 0 + <0)/70 0, a contradiction. Thus for at least one 9 (r r )

where dw 0 (s ) > 0 we must have v0 (slllu(0)) >1 - v0 (r 0 ilu(0))

It follows for some s 0 Iops [ 1r that v0(s0 ,l,u(0)) , 0 and

vO (s 0 l ,u(0)) 0 Applying Lemma 10, we conclude for all s F (s 0-r 1 1
that v0 (s;lu(0)) 0 and v -(s-',u(O)) > 0

Let Y denote the left hand side of (13) with v0 (sl~u(0)) sub- 4
stituted for v(s,u1 ) We hiave bv the preceding arguments that

v0 (rI'l~u(0)) > 0 and v'(rl,l,u(0)) > 0 o Moreover, for any

s C [r0 r we have v0 (rlU(0)) v0 (sl 2 u(0)), so if l 0

then I

el[v0 (rl l.u(0)) - fV 0 (s,lu(O))dl (s) -0 0S

in which case Y 0 . Letting u, I in the left hand side of (13),

we have

lim ' + ei + <l)v(rlu.) - 2 V(S'U )dUl(S) + ::v'(r u)}
1/ i l I7

-70-



lim ,( 1 + e1 +KI)v (s,1,u(P)) - % fv (s,lu(P))dtI; (s)

PO S

+ r. Iv P(r1 ,1,u(P))!

l Y" lurn - +
P40 P

Thus, by the remarks following equation (13) there exists some

u (-, ) which satisfies (13); it remains to show this u1  is unique.

Suppose there exist two numbers C0 < C1  and corresponding solu-

"ions v0(s) and vt(s) of (5), (6) such that v0 (r) C0  and

v1(vO) = CI . Let the Borel measurable function a1 (s) from S into

K1 be such that a (s) ; Al and

min max (a(sa a2)v(s) - iL(s,ala 2 )vo(s) + ((sa )
iaAs 2 i

max (a(s,a (s),a 2)v"(s) - A (s,al(s),a2)vo(s) + ,'(sja (s),a 2)
a2 A

2

tor each s E S Let the Borel measurable function a,(s) from S

into K2 be such that a2 (s ) t 2 and

J max {8(s'a (s)'a 2 )v(s) -c(S,a(s),a 2 )vl(s) + (s,a(s),a2)I

2cs

(s a (3);a 2 (s))v (s) - Xj(sal(s) a2 (s))v (s) + (s)a(s);a2

for each s c S . Then

= -71-



Fz

0 v"(s) + mn max {8(sa 1* avI(s) -X(salaz)v (S)
a cA1 a A2

1s 2

+ y(s.a1 ,a2 )}
2t

v"(s) + max {6(s,a (s),a 2 )vI(s) - Xc(s,al(s),a 2)v (s)
a eA2

+ y (s,ap(s),a 2)}

v"(s) + 6(s~a (s).a 2 (s))v'(s) - Xa(s~a (s):a 2 (s)v (s)

+ y(s,al(s),a 2 (s))

and similarly,

vU(s) + 6(s'a2(s)aWN s) - a(s,al(s),a 2 (s))v 0 (s)

* y(s, a1 (s),a 2 (s)) < 0

Defining the Borel measurable function

.s) -2 - v0)(s) + a(ss))ads-(V - v0 )(s)
ds vl-ls,2()i.I 0

.C(s,aI(s),a 2(s))(v I - v0 )(s)

we see that ,(s) 0 Letting v(s) - V1 (S) - v0 (s), we see that v(s)

is a solution to

v"(s) - -E(s:a (s),a ())v'(s) -" )a(s,aI(s),a 2 (s))v(s) t-"i-(s)

satisfying (by subtracting boundary conditions (6))
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(15) ('O + e + K )v(r e (s)dl (s)- (-l) iT v'(r ) - 0

I1 ej~fvs.

as well as v(rO) = v(r O) C1 - 0

J It remains to show that v(s) cannot simultaneously satisfy all

three of these boundary conditions. Assume v(r0) C1 - C0  and (15)

I holds for j - 0 . Let s o - min{s E Siv(s) - C1 - C0  and v'(s) > 0}

Note that a exists because if v'(r 0) > 0 then ao = r0, whereas

if v'(r 0 0, then by (15)

II
0 v(s) dpo(S) - ( C0 i- + 'o)V(ro) - r0 v(ro) 0 0v(ro)

so e 0 and for s.re sI C (r,,r, wiLh diO(s ) 0 we have

v(s I ) v(r0 in whica case s o  (rC sl] By Lemma 10 we have

Jv(s) 0 ad v (s) - 0 for all s . ]0'r In particular, the

left hand s;de of (15) ia positive for j - I and Iheor-m 3 is proved.I
IThe fcllowing tr.oCjrem provides i .ne.essi r and sufficient

(saddipcinL) cnrdit-.or. :or an .-Imissizie i.)ntr-i tc be a solution to

t the zt; b uri, tzo.-rson &_e. io no%. reve:t t, the criginal notation;

where v s,ala 2) denotes th-e expected disc;unted cos: of a process

LorrespLinding to the cont-.. a = ,

j 71,t-rer 11. Let v(s) be tht- unique SolutiL- c (b), (). A control

2 a ) c M is optLmal if Lid on y if
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(16) max 2{d(s. 1 (.),a 2)-l(b (e, A I(s)a e2)() - 1(. + ( S 2)]W

2 1

II

=d~s~zl (s),i 2(a))-t[b(s,;.l),(s)() -X (s) + c s?(s,2(a)) ]

(16 ma{d(S,a),a2 )-l (b(, (s) )'() - (s) + c(S,al ())

al2Aa

a I A2

for every a e S which is a continuity point of a and, for j 0

and j -1, aj > 0 implies

(17) max2 c(rj )a 2 ) - (ra (r ),a2(r

min c(ri.ala 2 (r ))alEAl

Moreover, if a is optimal then c(s) - v(s,a13 a2 ) is the value of the

game,

Proof. Suppose (16) and (17) are true. By the theory of saddlepoints

we have

1in max 2 id(saa 2 ) (b(s,a1 ,a2 ) '(s) -Xv'(s) + C(s'al,a.)]}
a eA Ia EA2 122ai s a2As

= d(s, 1(5),a 2 (s))- [b(s,a 1 (s),a 2 (s))'(s) - )v(s) + c(s,;I(s),a2(s))]
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and,.if a 0 , min max c(raa) - c(r r(r)a2( ))a21A2 (jaa 2  1aI  2 rj

a 1_A t  a 2

Substituting these in (5) and (6), we see that v(s) is also the unique

6olud1on of (1) and (2), that 1,, v(s) = v(s,a1 ,a2)•

With a2(a) fixed, in a bimilar manner we see that v(s) is

the unique solution of (5), (6) of Chapter 1I, that is, v(s) is the

minimal expected discounted cost for an ordinary optimal control problem

involving the control al(s) In view of (16) and (17), we have by

Theorem 6 of Chapter II that v(s,al,a 2) < v(s~a1 ,a2) for each 1l 1

and each -a c S . Similarly, v(s,a1 ,a2) <.v(s,a13a2) for all a2 E M2

Hence a is optimal and v(s) is the value of the game.

Conversely, supl-u-v a is aa optimal control. First we'll show

that

d(s,aI(s),a 2 (s))-(b(,a1 (s),a,(s))v'(S,a:ao) - .v(s,al,a2 )

+ :(s al(s),a2(s))]

max2 {d(s,a (s),a (h(sa (;),a 2 )v' (s,al1a2) - )v s,al,a2)

2 s
i 1 " ~C('a )' a2 ]

XI

min max 2{d(s,aa 2 -b(S,al,l)v'(s,al,a )) -Xv(s,a I a 2 )

aEAl a CA
, 2

+ c(s, aZ 2

> max 2  rin I{d(S,a,a2) [h(s,al,a2 )v'(s,a1 ,a2) - (S-aa2a a2 A2 a I A

+ c(s,al , a 2)]
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i

am n d(sala 2 (s))' b(u~al9 a2 (s))v'(S,al,a2) - 2v(sal1
2

2)

+ c(sala 2 (s))]})

" d(s , a1 (s), 2 (8))
1 (b~a 1(s)2 ,a2 (s))v'(s,a 9la 2 ) -

+ C (esa (),a 2(s)) ]

Now v(s, - inf v(s,a1 ,a2), so by Theorem 6 of Chapter II, the :

12) a EM 1aa1

last inequality is true; sitmilarly, the first one is true. The inequal-

ities are true by saddlepoiat theory, so all are equalities. Similarly,

if Oa > 0, then

c(rj, (r ),a2(r max c(ral(r ),a2)
a EA j

2

min max2 c(rj ala 2 ) - min c(r ela. (r))
aCAl a acA a EAl 2

Substituting oese equalities into (1) and (2), we see that v(sa 2

is the unique solution of (5) and (6), that is, v(s,al,a2) - v(s)

Substituting v(s) for v(s,a,,) in the above equalities yields (16),

and Theorem 11 is proved,

A diffusion process two-person, zero sum game problem can be

solved in principle as follows, First, obtain the solution v(s) to

(5) and (6). Second, consider the map r from S into K I K2 such

tha (al,a ) c T(s) if and only if al ; Al, Cc A , and (al,a
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Ii a saddlepoint of d(t, a)Eb(o,a ,W2 )v' -_ + cCs,)laC)

If > 0, J - 0,1, then redefine F(r ) so that (al,a 2 ) c r(ri)
fnf A1 2

if and only if c , a LA 4 a1 1 d 2 ) is a saddlepoInt of

c(ri~al;a 2) . Note that F(s) - D is possible for some a . S, in

which case the same is without solution, On the other hand, if r(s)

for each s c S, then v(s) is the value of the gane, even if it cannot

be attained. Finally, endeavor to choose i piecewise continuous function

a(s) such that a(s) c F(s) for each s e S

The following result is a sufficient condition for (16) and (17)

to be satisfied by v(s) and some Borel measurable control a(s), that

is, for the map mentioned above F(s) # ¢ for each s c S . The real-

valued function h(z) on the compact, convex set C C En  is said to be

quasiconvex if {z c Clh(z) < at is convex for each 4 & E . ThL.

function is quasiconcave if -h(z) is quasiconvex. Corollary 13 is an

immediate consequence of Theorem 12 which, in turn, follows easily from

a minimax theorem by Sion (20].

Thoorem 12: Let v(s) be the unique -olution of (5), (6) and suppose

Ai is convex for each s S 5, i - 1)2 Then there exists some Borel
S

measurable control a(s) = (al(s),a 2 (s)), with a](s) c A ands

a2(s) A2  for each s c S, which satisfies (16) and (17) providcda

I d(s,ala2 (b(s,a 1 ,a2)v'(s) - \.v(s) + c(s,al.a2 ) ]

and o c(r'al'a2), J - 0,1, are quasiconvex in a f A1 fic each

2 22
a A 2 and s t S and are quasiconcave in a, r A2  for each

2-, 7-



a e A1  and E S.1
Corollary 13. Let v(s) be the unique solution of (5), (6) and suppose * j
Ai is convex for each s e S, i - 1,2 . Suppose d(s;a,a 2) is con-

stant with respect to (al,a2), b(s,al,a2) is affine with respect to I
(al-a2 ), c(s,a I :a2 ) is convex in a1  for each a2 As and

c(s,ala 2 ) is concave in a2 for each a c A all for each s c Ss

Then (16) and (17) are satisfied by some Borel measurable control

(a (s).a,(s)) with al(s) ; A and a2 (s) c A
2

E1xample.

O r. < r d(s'al2 = A 0

A = (a E E lall z Sl, Z1 > 0 b(s,al,a2) aa 2 /s

2 1 1 21)A2  t a2 F E fa Z <zs) z2 > 0 c(s,al,a2)
s a E a2 , _ , c = C

r0 boundary condition. v' (rO) 0 0 (reflection)

1 boundary condition. v(r1 ) " XI  (absorption with cost )

For any value of s, v(s), or v'(s) we have

11 a a2
min max A--1 12'(s) - .v(s) + C
acA1a a2 A L

1[ala 2
-nax min A (s) -W(s) 4. C

a. EA
2  a a:A

1
a s



= A [C - Xv(s)] ,

so a(s) - (0,0) i) the optimal control for all s e S . Therefore,

the value of the game is given by (1), (2) to be v(s) - Cletx + C2e'tX
trI  2tr I  e2tr0 )

+ C/X, where t - 7/A, C1  e ( 1 - C/)/(e + e ), and

C2 = e 1 (X1 - C/X)/(e "t(r- r0 ) + 1)

4. The Zero Sum Problem with Undiscounted Costs.

The zero sum, two-person diffusion process game problem with

undiscounted costs will be one of two types, depending on whether the

boundary conditions are conservative or non-conservative. The results

in this section parallel those of Section 3, and, consequently, they

will brief. The conservative case will be treated in the second half

of this section. For the purposes of this section, the boundary condi-

tions are said to be non-conservative if at least one boundary is

absorbing and neither boundary is purely adhesive, that is,

K0 + V1 >  , Kj +1 J +0 j > 0 j - 0,.

Let v(s,al,a2) v(s) denote the expected undiscounted cost of a non-

conservative process corresponding to the admissible control a - (a1 ")

c M . Then v(s,al,a2 ) will be the unique soltuion of (1), (2) with

A - 0 . The control a c M is said to be optimal if for all ac MIS

all a2 £ M2 , and all s c ^ we have
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i ~~~v(s'ala) < v(s'al'a2) -< v(s'al a)

in which case v(sala 2) is said to be the value of the game. It will

subsequently be proved that the value of a gamet if it exists, is pro-

vided by the following result whose proof is a generalization of one by

Mandl (16, pp. 158-167].

Theorem 14. With non-conservative boundary conditions, there exists

a unique solution v(s) to 2

(18) v"(s) + CA minAmax2{d(sa 1 1a2)- [b(saa 2)v' (s) + c(s,a1,a2)]} - 0

satisfying

(19) (e1 + Kj)v(rj) - e1  (v(s) + v (s))du (a)
S

-(-)~i jv'(rj) - YjYj - K X o J= 0,1, 4

where y -min max2 c(ra , J- oi.
1 r 2 r 1 a,)

Proof. Lemma 7 does not depend on X > 0, so for every ulU 2 C (-OOM)

equation (18) has a unique solution v(s) satisfying v(r0) - 1

and v'(r 0 ) - u2 . For fixed u1  and u2  denote w(su 2) - v'(s)

and note that w(s,u 2) is independent of uI  since it is the solution

of a first order differential equation under the initial condition

-80-



w(r0 ,u2) - u2  Writing for j - 0,1

J" i (S ) + CYj +

J we have that (19) is equivalent to

(20) Kou- 0 f- foU2 - No,
S r0 II  /s

: uI + (6 + ) fw(tU2)df w(,ux)dtdpl(S)

11 1 1 2 w1~ud f 21 1rr] S r0

+ T1w(rl,u
2) N 1

Eliminating u1  from (20), we obtain the equation for u2

r~ S

(21) K0(0 1 + < 1) r w(t,u2)dt + v1 0 w(t,u 2 )dtdi0 (s)

0 S 0

+ K 1 .oU 2 + o1 w(Cl;u 2 ) - ,oSl w(t,u2)dtd 1 (s) <N 1- <N

0

It remains to show that (21) is solved by a unique value of u2, since

then u can be obtained from (20). By Lemana 8, w(s,u 2 ) is continuous

and strictly increasing in u2  and w(s,u2) , _ as u 2 -- _ in which

case the left hand side of (21) has these same properties (see Mandl

[16, p. 163]) Hence (21) has a unique solution and Theorem 14 is proved

Theorem 15. With undiscounted costs and uon-conservative boundary
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conditions, let v(s) be the unique solution of (18), (19). A control

a = (alga 2) c M is optimal if and only if

(22) max2 fd(s,a 1 (s),a 2)_ [b(s,a1 (s),a 2 )v'(s) + c(s'al(s),a2)]1
a2s

- d(sal(s).a2 (s))- 1[b(s,aI(s),a2(s))v,(s) + c(s,a 1 (s),a 2 (s))]

* mn l'd(s, 2(s) )[b(saa 2 (s))v'(s) + c(s,ala 2 (s))]}

for each s E S which is a continuity point of a(s), and, for j " 0

and J 1, ao > 0 implies 
,

(23) max c(r al(r),a) c(rj,a (r ),a (r ))j 1
a 2 cA2 2 2 -

rin c(rj a (rj))

1r

Moreover, if a(s) is optimal, then v(s) A v(s,al,a2) is the value

of the gome,

This proof is essentially identical to that for Theorem 11, so it
will be omitted, A diffusion process zero sum, two-person game problem

in the undiscounted cost, non-conservative process case can be solved,
in principle, in the same manner as with the discounted cost case. I
Moreover, there exist sufficient conditions analogous to those of

Theorem 12 and Corollary 13 for equations (22) znd (23) to be satisfied
by some Borel measurable control a(s) J
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1 Example.

1S - 0,l] d(s,a1 .a 2) A > 0j

J A1 
- (-Y,Y] C E, Y > 0 b(s,al,a 2 ) - ala2

A2 
= (-Z,Z] C E, Z > 0 c(s,a,,a 2) = C

r0 boundary condition: v(r) X0 (absorption with cost

rI boundary condition: v'(r I) - 0 (reflection)

For any value of s or v'(s) we have

mn I  max 2 (A-l[a1a2v'(s) + CD
a 1cA a 2A

max min A- (a a2 v'(s) + C'}= A- C
a2EAs a

so' a(s) = (0,0) is the optimal control for all s c S . Therefore,

1 2the value of the game is given by (1) and (2) to be v(s) = (C/A)

+ (C/A)s + 0

i I We now discuss the other type of undiscounted cost problem, the

conservative case. For the purposes of this section, the boundary

conditions are said to be conservative if neithei boundary is abs'orbing

and at least one boundary is not purely adhesive, that is,

8
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KO Ki U 0 T ' 0 +  0 + *l 1+ O1 > 0

Let G(a1,a2) , denote the mean cost per unit time of such a process

corresponding to the admissible control a - (al,a 2) c M , Then

G(al,a 2) is the unique number to which there exists a solution to (3) and

(4). The control a ; M is said to be optimnal if for all aI E I1 and

all a2 E M2 we have

O(ai,.a2 ) i (al Iai2 ) <_ C(al1 P-2 ) ,

in which case (ala 2 ) is said to be the value of the game, The

following result characterizes the value of a game,

Theorem 16 With conservative boundary conditions there exists a unique

number 6 such tnat the equation

(24) w.(s) + min max ;d(sa Ia I  [b(sa,,a2)w(s)- 0
a ;A a LA 2

1s 2 s
+ c(Sa ) = 0

has a solution w(s) satisfying

(25) f S -r d + + ' + ) 0

j 1

where ,= ,Ax- c(L a.,a,

r rr. g .I J



I
I

Proof. This proof is rather similar to that for Theorem 3, so it will

only be sketched. By Lemma 7 for every u2 , c ( there exists

I a unique solution w(s,u 2,G) to (24) satisfying w(r0,u2 ,) u2  By

Lemma 8, w(s,u2 ,0) is continuous and strictly increasing in u2  and

w(s,u2,O) - -+ as u -. ± . It follows that the left hand side of

1 (25) with w(s~u2, ) substituted for w(s) is continuous and strictly

increasing (decreasing) in u 2  and diverges to ±t- (;- ) as u -

for J - 0 (J = 1) . Thus, if boundary rj is purel) adhesive, then

G = y and u2  can be determined uniquely from the other boundary

I condition.

On the other hand, if neither boundary is purely adhesive, then

to every 0 there exists a unique number u2  u2 () such that

St'(sO) - w(s,u 2 (C),3) satisfies (25) for j 0 . It remains to show

that w(s,S) satisfies (25) for j - 1 with a unique value of ED

I Consider 0-lw(s,C) for C > 0 . It can be shown as with Theorem 3

that ,-lw(s,¢) w(s) as 3 for all s t S, where w(s) is the

solution toI
w'(s) = -riI max 2d(sa 2 l[b(saa s - l]

-A a L-A[bsa,)(s
Sa s  2As

satisfying

: e0  f fw(y)dydLo(S) + 0W(rO) - 0.

I After showing that

I
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I
° I

81 f (y)dydi (S) - r(r)- 1' 0

S ro

we conclude that the left haud side of (25) for j - 1 with w(s,G)

substituted for w(s) diverges to ;- as ' - -* By continuity,

w(s,O) satisfies (25) for j - 1 with some value 0 This solution

0 is unique; otherwise a contradiction can be derived as was done with

Theorem 3 to show the unicity of v(r0) -

Theorem 17. With undiscounted costs and conservative boundary conditions,

let 0 be the unique number such that (24) has a solution w(s) sats-I

fying (25). A control a = (al,a 2 ) e I is optimal if and only if

(26) max2(d(s,a (s)a - b(sla (s),a 2 )w(s) - - + C(s'a (s),a 2)]}

= d(sa ( a ( s)[bsa , (s)s -13 + c(a (s) )] IS1~ 2

= minlid(s a (s))-l [b(sal a2(s))w(s) - " + c(sal'a2 (s))]} I

for every s c S which is a continuity pcint of a(s), and, for I
j = 0 and j = 1, c. 0 implies

3I

(27) max 2 c(r,;a 1(r j),a 2) c(ri3a I(r ),a 2 (r ))

mirk ¢(r aa (rj))1l~ j 1 (2

-S6-
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Moreover, if a(s) is optimal then O(a1,a 2) is the value of the

game,

I
This proof is essentially identical to that for Theorem ll, so

it will be omitted. A diffusion process zero sum, two-person game

problem in the undiscounted cost, conservative process case can, in

principle, be solved in the same manner as with the discounted cost

case. Moreover, there exist sufficient conditions analogous to those

of Theorem 12 and Corollary 13 for equa.ions (26) and (27) to be satis-

fied by some Borel measurable control a(s) .

Example.

S (0,1 d(s,al,a 2 ) - A > 0

As [-YY] C E, Y ' 0 b(s,a l ,a2) = ala2

A 2  [-Z,ZI C E, Z 0 0 c(s,al,a,) = Css

Suppose both boundary conditions are pure reflection, For any value of

jS, W(s), and C we have

min1 max2iA- (aIa2W(S) -- + Cs]}
alAs a2 s

max min A [a aw(s) - 0 + Cs]} = A [Cs -

ar'A2 acA 1 -
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so a(s) - (0,0) is the optimal control for all s E S . Therefore,

the value of this game is given by (3), (4) to be C - C/2, with

/A s1 2
w(s) (OA)- (C/A)s

5- Application: Optimal Welfare Policies.

Suppose the problem of detarm.nng some government's optimal

welfare policy can be posed as a diffusion process zero sum, two-person

game as follows Lit the state spae correspond to some population so'

that the stata of the process will equal the number of people receiving

welfare Assume the boundary conditions are pure reflection, Let the

first control component, operated by the governmeLlt, be the cut. of

welfare per person per unit time. Let the second control component.,

operated by the population, equal the cost of civil disturbances per

person per unit time. Finally, let the costs of this welfare game be

represented by a continuous movement cost which equals the sum of the

total welfare and tctal civil discurbance costs per unit time, We

naively assume the civil unrest cost to the government equals the

reward ( g. satisfaction) to the participants Thus, the total co:t

tc the gove'nment equals the total reward to the population. and the

government acts to minimize. while the ?opulation acts to maximize, the

expeCted costs of this game

Presumably. the d:ift and diffusion coefficients should reflect

L14 ., t that th gre!Ltfr . E wulfare cost pur pcon the greate- the

tendenc.y for the number of pecple receiving welfare to increase 1
- ~p

I



Similarly, these coefficients should reflect any tendency for the number

of people receiving welfare to decrease as the civil disturbance cost

is increased. This tendency would exist, for example, if the government

were to retaliate by more strictly enforcing welfare elgibility require-

_ ments. In summary, for avery combination of controls, the number of

people receiving welfare can be represented by a conservative diffusion

process,

Example. This example involves undiscounted costs. Let S - [0,P] and

suppose Ais [O Ci] for i -.1,2 . Let the diffusion coefficient be

A > 0, the drift coeffic.ent be the general function b(s~a1,al2), and

the continuous movement cost a + a2P . By inapection, if a(s) -

(0,C 2) and e - C2P, then (3), (4) have the unique solution w(s) 0 0

Moreover, this control a(s) satisfies (26) so it is optimal and &

is the value of the game.

6- The Non-zero Sum, N-person Game Problem.

The remainder of this chapter describes a class of controlled

diffusion processes whose control problems can be viewed as non-zero

sum, N-person games. 14e consider the multi-person controlled diffusion

I process of Section 1; these processes are controlled by N persons and

generate N streams of costs (N > 2) , ConLroller i (i - I,- N),

I rh
who operates the i control, endeavors to choose a control a4

so as to minimize the costs ot the i cost strea.m generated by the

process. A game situation exists by virtue of the fact that t!he c.st to
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the i th person is Influenced by the actions of the other players

The optimality criterion used for these processes is tkat of a

Nash equilibrium point, If an admissible expected cost is defined to 1
be the expected cost ccrresponding to some admissible control, then the

solution to this game will be some admissible control whose corresponding

expected cost is a Nash equilibrium point with tespect to all admissible J
costs Thus if player i unilaterally deviates from his component of

this optimal control. then his exp.ected costs will either be unchanged

or increased The adoption of the Nash equilibrium point optimality

criterion is made in recognition of the fact that a variety of meritoEr- :
ius optimality criteria exist for non-zero sum; N-person game problems

In particular: a "prisoner's dilemma" situation 4.ight eXist where theC

piayers would gain by deviating from the Nash equilibrium point solution

in a cooperative manner

The following two sections provide results respectively for the

disccunted cost uasc and the undiscounted cost .ase The main result

of each section is a necessazy and sufficient condition for a control

t be optimal In addition. a method based upon the theory of differ-

ential games is provided for solving a ditlusion process non-zetz sum:

N-person game probien This method is substantially the same ab a

method used for so.%\ing an ordinary airusbicn process optimal -ont-Ol

problem The ptiMizing soLution ot an _quation i. substituted into a

dliferential equation whise soluticn. in turn; is used tc obtain the

cptilla! CCtItroL Thc linai two se~tins indi-itu t-0 possible pprco-

tluns of this rtcde.. .nr ,'I cf pclluti,'n and uptinl uarfare itrategies

To rinirize ambiguity the foilting r-.incioy is used ;he



',I

n h

I control ai  H. operated by the 1 plaver .nd is generally1EI
a ,ector-valued function on S The cont: -l a (a- ;a is the

IA

v'ector consisting of the N players' contcois

IA
7 The Non-zero S_. Pobiem with Disccunted Cc ts

Let v(s a) v(s.,o aN) denote tne e. pe.ted discuntcd .JSt

a process correspcnding to the admissible xtroi a M, and .it

v (s,a) be its i th  component, i - 1, ;N lhen , 's.a) wiii be

the unique solution cf (1), (2) The ccntto > is said rc 'e

-ptimal, Lhat is a solotion of the game if it 1b a N-sh eq'llib:ium

point of the expected ois-ounted cost functicns, That i.

v (s a) V (s,a a

ror all s c S, ali a M and each i . in this --Se

,(sa) is said to be a value of the game

To simplify cur notat~i'i d;iae

val g(z) g) z is a Nash equ- .L. i

Wh c : e. fo i i gZ Ln L -on

g :I* - il "- ,.t uL. tL * .. . 1, _ 1ng

0'i e 8 A COIILt_ ..-M is)t:.a. i n nx ;.I :,t#,' S



which is a continuity point of a(s)

(28) d(s,a(s)) [b(s,a(s))v' (s) - Xv(s) + c(sa(s))]

E val {d(sa) [b(s,a)v'(s) - Nv(s) + c(s;a)]} .I
acA

where v(s) v(sa), and

!
(29) o0 ((rja(r)) - yj) - 0 j - 0,1,

where za val c(rj,a) , 01

rJ

Proof. Let a be optimal For arbitrary 1 let al,,a 1 .a+, 

:aN be fixed sc that i(s,a) - inf %i(s,a i a i I .a .a+ 1 : ,aN)aic}|i

is the minimal expeztd discounted cost of an optimal control problem

and ai  is one of its optimal controls. By Thecrem 6 of Chapter II we

have

d(s.a(s))-ib(r.(s))vi(s) - vs) + c (s,a(s))]
i i i

a mini(S,al(s) ,a,, . l [b(s,a(s

-a (s))vI(s)- v (s) + c (sa (s). ai: . aN(s )

for each s S which is a continuity point of (s) and
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j (31) aj(cj(rj a(rj)) - yj) 0 , " o,1k
J i i

where Y min cj(r .a(r ),...,a...,aN(r)) J * 0,1
i a cA i jJJN

rj

Since i is arbitrary, (28) and (29) must be tiue.

Conversely, suppose (28) and (29) hold and let i be arbitrary

Now (30) and (31) must hold, so by Theorem 6 of Chapter II we see that

v (s.a) is the minimal expected discounted cost of the ordinary optimal

control problem. minimize vi(s,a," , a," "aN) subject to a E M

Since i is arbitrary, a defines a Nash equilibrium point for this

game.

Theorem 18 is substantially different from Theorem 11 for the

zero sum, two-person game situation in one respect, In each case the

necessary and sufticient condition is a function oi the solution to a

differential equation, With Theorem 18. this solution is expli:itly

a function of some control a ; IM, whereas in the case of Theorem il

the corresponding differential equation solution is explicitly ind.epen-

dent of any control a t M , Thus, given a control a E M, one can

determine v(s.a) with Theorem 1 and then ascertain whether a(s) is

optimal with Theorem 18. Conversely, an optimal control a(s) will

satisfy (28) and (29) However, Theorem 18 does noL provide an explicit

procedure for solving the diffusion process non-zero sum, N-person game

I problem

The following computaticial procedure is based upon a method

II -93-



devised by Starr and Ho [211 as wall as Case (3] for solving non-zero j
sum differential games Let t (tl;-c.,tN) and u - (Ul,..-,u N ) and

define g(s;t,u.a) : S E K E by 1

g(s~t,u,a) z d(s,a)-l (b(s,a)u - ,,t + z(s,a)] 1

2Now consider the point-to-set map 7 ; S E K defined by

1
F(s,t,u) = ia £ A Ig(s,tu,a) E val g(st.u,a)}

a-As

If C ' 0 for j 0 or j = I, then redefine 7(r t.u) so that

.(r ,t.u) {a E A .c(r tu, ) cval c(r1,t~u.a)} If r(s,tu) # €
acA rj

ior each (s,t;u), then choose a function a(s,t,u) with a(st u)

I (s.t,u) for each (s.tru), substitute -(s,v(s),v*(s)) for a(s) in

(i) and (2), and solve for v(s) If v(s) exists, then it is a

value of the game If a(s) = a(s,v(s)v' (s)) is piecewise continuous,

then it is an optimal control and v(s) r v(s,a)

Note that this prozedure may break down in three different ways:

f(s t.u) may not exist, v(s) may not exist: and a(s,v(s),v'(s)) may

not be piecewise cont:nuous The reason why vis) may fail to exist,

althcugh a(sct:u) does is that the Euclidean norm of g(s;t,u,a(s,t,u))

may fail to be continuous on S - E N -Since most differential equation I
theory existence theorems specify some form of continuity requirement,

ccunterexamples can be easily constructed 'Ihe iollcwing pioposition J
serves to character'.ze
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Proposition 19. If As is continuous on S, then - is a closed map

!S on SI

Proof, For each i = 1,- ,.N, define the point-to-set map

i' S E2N × K -Ki by

ii

The continuity of gi(sit,ua) implies ri is a closed map- sc its

graph Di -{(s,t,u,a) a i E Fi(st,u,a)l is a closed set. The map

is thus closed because its graph D (1  N is closed,

Proposition_20, Suppose each component i of g(s:t ,ua) is quasi-

convex in ai E K for each s E S, each aj E K (J = . i-i i+i

N i.,N), and each t, u e E , and assume A is convex for each s - Ss

ind i = i,-- ;N . Then F(s:tu) 0 o for each (s;t,u) E S - E2 N

The proof of Proposition 20 is omitted be:ause it follows easily

from Rosen (17] and Sion (20] If Proposition 20 holds and the Nash

equilibilum point is unique ior each (st.u), then the closed map

(syc'u) is simply a plecewise continuous function This observation

leads to the following existence theorem Following Rosen [17], the
] EN _E N

function g : E E is said to be diagonally stri:tly convex for
03.

-.- K if for each a , a 1 K we have

-9
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(a - aTf (aO ) + (a0 - al)Tf(a') 0

where f(a) - .6.- A sufficient condition that g(a) be

be diagonally strictly convex is that the symmetric matrix

[F(a) + FT (a) b e positive definite for a . K, where F(a) is The

Jacobian with respect to a of f(a) (Rosen (17]). !
Theorem 21 Assume A is continuous on S with A convex for each

s E S and i - i. .. ,N Also assume d(s,a) is constant in a, b(s,a)

is affine in a, and c(s,a) is diagonally strictly convex in a, all J
for each s t S Then a solution exists for this diffusion process

game-

Proof.. The function g(s.t-u,a) is strictly diagonally convex, so by

Rosen [17] there exists a uniq.e Nash equilibrium point for each (s;t,u),

that is; by the above remarks '(s,tu) is a continuous function on

S - E2N, By differenriai equation theory and the ar.-uments of Section

1. there exists a solution v(s) to (1); (2) with (s,v(s);v'(s))

substituted fo a(s) Hence a solution of the game is a(s) = I

! (s:v(s),v (s)) E M. and the corresponding value of the game is

V(s) - v(s.a) A
Exanple. This example is a two-person game. Let the state space arid

sets of admissible control values equal the unit interval Let

d(s,al~a2 ) = 1: b(S,al:a 2 ) = a ,- a,, and ci (s:al,a2 ) - C + a i,

i = 1:2, where C is a constant Suppose the boundary onditicn at
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I
r0  is reflection and that absorption occurs at rI wiLh cost A 1

Following the above procedure, we have for i - 1,2 that ai(stu) -

j for ui < 1 and ai(s,tu) - 0 otherwise, By symmetry we have that

v1 (6) 0 v2(s) is the solution to

(32) v"(s) - -2a (s,v(s),v'(s))Vj(s) + XVl(s) - K - a (s,v(s) v (s))

satisfying v' (rO) " 0 and v(r1) 
=I In some neighborhood of r0

we have vi(s) > -1, so in this neighborhood a(s,v(s):v'(s)) - (0,0)

and, for some constant q, v(s) - qe + qe + C/X If

e +-eA__ -
__ +e + then q can be chosen so that vl) "

J1 - (e/- e"T)

and v'(s) > -1 for all s e S, in which case a(s) - (0,0) is optimal

for all s e S , If X e e then for
1 

+~4~'

some a0 c (0,1) we have Vl(s O) - -1 and a(s) - (0,0) optimal for

all a F 0, ), For vl(s) to exist, we must have v"(sO) 0 when0 1 1 0

a (sov(so),V'(So)) = 1 in (32). But this is easily verifi~d, so for all

s > OS in some neighborhood of s we have a(s) (1,1) optimal and, - Uls u29

v(s) - tie + t2e + (C + 1)/A,, where uI = -i + di + ,

u2  -i - +' -X- A, and tI  and t2  are constants It remains to show

a(s) (1,1) is optimal for -1 s _> so Suppose not, but that

5I < 1, say, is the smallest s > so  such that vj(s I ) - -1 Then

V <(s V" ' 0, a contradiction, The unknown constants q, tit t
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2

and s o can be solved from the boundary conditions and the fact that

v'(s) is continuous with v'(s O ) - -0

8. The Non-zero Sum Problem with Undisounted Costs

The non-zero sum, N-person diffusion process game problem with

undiscounted costs will be one of two types, depending on whether the

boundary conditions are conservative or non-conservative- The results

in this section parallel those of Sections 4 and 7, and, consequently,

they will be brief. The conservative case will be treated in the second

half of this section

For the purposes of this section, the boundary conditions are

said to be non-conservative if at least one boundary is absorbing and

neither boundary is purely adhesive, that is,

K 0 <1 0 + j a O

Let v(sa) = v(s a.; a ) = v(s) denote the expected undiscounted±

cost of such a process corresponding to the admissible control a c M

Then v(s,a) will he the unique solution of (1), (2) with - 0

The control a M M is said to be optimai if it defines a Nash equili-

brium point with respe.nr to the expected cost functions, that is,

v (s5.' _ v(q',al, a a
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for all a S, all ai C M, and each 1 l," ,N In this case

Iv(s,A) is said to be a value of the game,

Theorem 22. With non-conservative boundary conditions, a control a c M

is optimal if and only if for each a c S which is a continuity point

of a(s)

d(s,a(s)) 1[b(s,a(s))v' (a) + c(sa(s)))

c val {d(s,a)YI[b(s,a)v'(s) + c(s,a)}
acA

s

where v(s) - v(s,a), and

CYj(c(rj,a(rj)) - y ) - 0 , J - 0,1,

where y. c val c(ria), J - 0,1
acA

The proof is essentially the same as that for Theorem 18, so it

will be omitted. Moreover, the remarks and computational procedure that

follow Theorem 13 apply to this case as well

Example. This example is identical to that of the preceding section

except that '.he costs are undiscounted Proceeding in a similar manner,

we have that vl(S) = v2 (s) is the solution toI
v1(s) * -2al(s,v(s),v'(s))vj(s) - C - a1 (s,v(s);v'(s))
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satisfying vj(r O ) - 0 and v1 (r1 ) 1 A', and that a (sv(s);v'(s))

a2 (s.v(s),vi(s)) - 1 (- 0) if v'(s) _-1 (_-I) If C _ 1, then

a(s) (0,0) is optimal for all s 0 S and v 1 (S) * + C(l - s2)/2

If C 1, then a(s) = (0,0) 1.s optimal and vi (s) * ; + C/2 +

(C - l)(exp(-2 + 2/c) - 1)/4 - Cs 2 /2 on (0,1/C), and a(s) - (1,1)

is optimal and v1 (s) 1 + (C + 1)(I - s)/2 + exp(-2 + 2/C)(I -

exp(2 - 2s)(C - 1)/4 on (l/C,l]

We now discuss the other type of undiscounted cost problem, the

conservative case For purposes of this section, the boundary conditions

are said to be conservative if neither boundary is ahsorbing and at

least one boundary is not purely adhesive, that is,

< +  i 0, 0 + tO + 7i +  I"0
0 1 0 0 1 1

Let 3(a) - 3(a, .  ,a N) - deiote the vector of mean costs per unit

time of such a process corresponding to the control a E. M Then

&.(a) is the unique vector to which there exists a solution w(s.a) to

(3) and (4) The control a E H is said to be optimal it iz defines

a Nash equilibriumn point with respect to the mean costs, that is,

(a) C, a )
1l ai-; alai+l N

for all ai M.i  i 1. N In this case --,a) is said to be a

vt
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Theorem 23. Withiconservative boundary condirions a control a E M is

optimal if and only if for each s c S which is a continuity point of

3a(s)

d(s,a(s))' [b(sa(s))w(s) - C + c(s,a(s)))

c vat {d(sa) (b(s,a)w(s) - C + c(sa)])
acA

where w(s) - w(s,a) and 0 - 0(a), and

Q (c(rja(rj)) - 0 'J - 0J,

whiere Y' E val c(r J,a), j - 3,1
aEA

rj

The proof is essentially the same as that for Theorem 18, so it

will be omitted. Moreover, the remarks and computational procedure that

follow Theorem 18 apply to this case as well

ii

Example This is an example of an N-person game Let S - Ai = [-i,1]

for i - 1, ,N and al. s c S, d(sa) - 1. b(s,a) = a1 + + a N

* and ci(s,a) !si for t - 1, ",N . Suppose retlection occurs at

each boundary, The i h  control a (s) - -1 if w i(s) - 0 and

J ai(s) = 1 otherwise By symmetry, w1 (s) - w N (s) so W1 (S) is

1 the solution to
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-Nwi (S) -C+ S; i k1 s) 0

tNw () 's + :, W w1 S) 0

satisfying w 1 ) W (-1) 0 B3y syr-untry wt n-aist have w~ (0) 0

so %40 vatifY that an - flJ hi a1 1 N

e-1

a (S)

9. 4pljcatiyn:-Contrnl cf Pollnticn

Supposc- that thc index Lo- pol)-lutionI is :,,nbrained to fall between

zero and some pJ'sitive number. This wouid he the L,.SC, for example, when

deiiing with an air basin or i body of water A~isuico that a collection

cf N factories automcbiles, or similar pollor ing nechanims contrIbUues

to LIIIS poll1uEIOn, .1nd thior each such mechanisin can COntrLOl th11. index cl

poilution by choosing the amount of iLS waSte products thatc is cmic~ed as

a nollu,;ant as cLppubed Lo beiLng processed in a pollot-,on-free mranner

Finally. assume that theru exiSs a Cost to each CJ1ntIoller for each

ievei of conticl i-s well as to each value of the pcllution index Then ~

non-zero sum. N-person dili ofl process PLone flaV periiapis b used as

This pollution model is a generalization of one in Chapter 11-



I
I

The state of the process will correspond to the index of pollution, and

the boundary huhavior at zero and the maximum index value, will be

J reflection or possibly reflection combined with adhesion An _dms:ible

control component ai(s) will be a piecewise continuous function o

the state space that will represent the fraction ot the ith control-

ler's waste products chat is being emitted as a pollutant Presumably,

the bigger the fraction of wastes being emiLted.- the smaller the control

cost rate but the bigger the drift coeffi,.ient Similarly, the bigger

th2 pollution index, the greater the pollutant cost rate An optimal

control will be an admissible control which yields a Nash equilibrium

point with respect to the exputed costs

Example This example involves undiscounted costs and N polluting

mechanisms. Let S A1  . [0.1] for i - 1 N so that the i
S

control component equals the fraction of the i h polluting mechanisms

wastes that is being processed in a pollution-free manner Let d(s,a)

1, b(s,a) -a1 - - a. and c.(s,a) - Cs + a fur i = 1; N,

and suppose pure reflection occurs at each boundary By Theorem 23 we

have

a 0 w I , (s)  i 1

1 i(s )  1

I
and by symmetry wl(s) = V'.(s) If C (s) U for ill s c S.,

then 3i . C/2 and v (s) 2is - Cs-/2, so this cutrol Is optinal if

C 8 On the other hand, suppose C , 8 Fo that there exist
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4'1

0 s S 1 such that wi(s O ) 0 wi(s 1 and aiCs) 1 for all

s C (solS 1 On Lso I ] we must have

Cs + 1 -C
w.(s) = te + +--,)ii

whers t is determined from 1w(S) (E to be

C(s O - s)i t 0 s
N s , s .

N e e

.ince w ) 1, we have
N0

C(s0 - s,)e Cs0 + 1 - 'i C

Ns Ns'
s - 0 NN

bu for large enough N this equation will not b-t s, tisfied by any

> 0 . Hence -f C ; 8, an optimal conLtol may ot exist

10, Application; Optimal Warfare _Srati

Suppose a war between two antagonists Is characterized by an index

that varies continuously between two r,al numbers r0  r_, and this war

is terminated in favcr of the first (second) ;rtagc.nist when this index 3
first ottains r 1 (r ) For example, this index could represent the
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portion of some land mass under the control of the first antagonist as

opposed to being under the control uf the second. Or this index could

represent the portion of some population that is allegiant to one govern-

went as opposed to being llegiant to'a second, Suppose each antagonist

can control this index by choosing alternative levels of fighting effort.

Finally, suppose costs to each antagonist are associated with each of the

two possible outcomes as well as with alternative levels of fighting

effort and the index value, Then the problem of determinig the optimal

level of fighting for these two antagonists can perhaps be resolved by

consideration of a non-zero sum, two-person diffusion process game.

The state of the diffusion process will correspond to the v ire

index, and the boundary behavior, at r0 and rl, will be absorption

or possible absorption combined with another type of boundary phenomenon.

Let the termination costs at each boundary be positive for the loser and

negative for the winner. Let the control represent levels of fighting

effort for the two players so that each player's continuous movement cost

represents the cost to him of the fighting levels and warfare index

being at particular values for one unit of time If a termination at

boundary rI represents victory for player one. then presumably the

bigger the first. (second) player's control the greater the tendency for

the -:arfare index to increase (decrease>, Similarly, the greater the

level of fighting the greater the continuous movement cost,

Example,. Let S - [01] and suppose d(sa) = 1, b(s,a) - a1 - a2

and ci(s,a) - a for i - 1,2 Assume the bcunda-v behavior is ab-

sorption and that terination at r represents defeat for player
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j + 1, where j - 0,1, with termination cost C > 0 for the loser

and -C for the winner, Finally, suppose the costs are undiscounted,

so we consider Theorem 22.

By symmetry we must have a1(s) = a 2(l - s) and v1 (S) - v2 (l - s)

for all s e S Moreover, a1 (s) - 0 if vI'(s) > -1 and aI(s) - 1
I

otherwise. If C < I and a(s) - (0,0), then v1 (s) - -2Cs + C so3
V ( s ) _> -1 and a(s) - (0,0) is optimal, If C > and a(s) - (1,1),

then v1 (s) = -s + (-2C + f)s + C so v1(s) -1 and a(s) - (1,1) is
1 3

optimal. Finally, if - < C < 1, then the following argument will show
2 4'

that for some s E (0,1) where v1(s -1 we have a1 (s) - 0 optimal

on [O,s O ) and aI(s) = 1 optimal on (sol] On (O,sO0) we have

a(s) (0,1), so v1 (S) = C + e - 0 On (sol - so ) we have

a(s) (l l) so

Vl(S) --!(s - sO)- 2+ C + e + - 1 - s

On (I - so,l) we have a(s) = (1,0), so

v s 5 0  5 2O2 -So 1-so-S
v.(s) 5s - 5 - 2s + C + e + (1 - 2sO)e - s

2 -s

,oving the equation vl(1) = -C yields a unique soltuion for s (0 , )
1 3

if I < C-2 4 , so we are done provided a(s) is optimal. The function
v1(S) is concave c- [0,1 - s0 ) and convex on (1 - Sol], so

vl(s) _ -1 on [Os,) and v,(s)< -1 on (so,l] provided vi(1)

-1 This last inequality is true, so a(s) is optimal.
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